我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系中,利用求動(dòng)點(diǎn)軌跡方程的方法,可以求出過點(diǎn)A(-3,4),且法向量為
n
=(1,-2)的直線(點(diǎn)法式)方程為:1×(x+3)+(-2)×(y-4)=0,化簡(jiǎn)得x-2y+11=0.類比以上方法,在空間直角坐標(biāo)系中,經(jīng)過點(diǎn)A(1,2,3),且法向量為
n
=(-1,-2,1)的平面的方程為( 。
A、x+2y-z-2=0
B、x-2y-z-2=0
C、x+2y+z-2=0
D、x+2y+z+2=0
E、+
考點(diǎn):類比推理
專題:計(jì)算題,推理和證明
分析:類比平面中求動(dòng)點(diǎn)軌跡方程的方法,在空間任取一點(diǎn)P(x,y,z),則
AP
=(x-1,y-2,z-3),利用平面法向量為
n
=(-1,-2,1),即可求得結(jié)論.
解答: 解:類比平面中求動(dòng)點(diǎn)軌跡方程的方法,在空間任取一點(diǎn)P(x,y,z),則
AP
=(x-1,y-2,z-3)
∵平面法向量為
n
=(-1,-2,1),
∴-(x-1)-2×(y-2)+1×(z-3)=0
∴x+2y-z-2=0,
故選:A.
點(diǎn)評(píng):類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測(cè)另一類事物的性質(zhì),得出一個(gè)明確的命題(猜想).由于平面向量與空間向量的運(yùn)算性質(zhì)相似,故我們可以利用求平面曲線方程的辦法,構(gòu)造向量,利用向量的性質(zhì)解決空間內(nèi)平面方程的求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)l,m是兩條不同的直線,α,β,γ是三個(gè)不同的平面,則下列命題正確的是(  )
A、若l∥m,m?β,則l∥β
B、若l∥α,m∥α,則l∥m
C、若α⊥γ,β⊥γ,α∩β=l,則l⊥γ
D、若l∥α,l∥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i是虛數(shù)單位,
.
z
表示復(fù)數(shù)z的共軛復(fù)數(shù),復(fù)數(shù)z滿足等式(2-i)•z=i,則復(fù)數(shù)
.
z
在復(fù)平面內(nèi)
對(duì)應(yīng)的點(diǎn)所在的象限是( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(cos
3
2
x,sin
3
2
x),
b
=(cos
x
2
,-sin
x
2
),且x∈[0,
π
2
].則函數(shù)f(x)=
a
b
-|
a
+
b
|的最小值是( 。
A、-
1
2
B、-1
C、-
3
2
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓錐曲線
y2
9
+
x2
a+8
=1的離心率e=
1
2
,則a的值為( 。
A、4
B、-
5
4
3
4
C、4或-
5
4
D、以上均不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

球的直徑為d,其內(nèi)接正四棱柱體積V最大時(shí)的高為( 。
A、
2
2
d
B、
3
2
d
C、
3
3
d
D、
2
3
d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在同一坐標(biāo)系中,函數(shù)y=log3x與y=3x的圖象之間的關(guān)系是( 。
A、關(guān)于y軸對(duì)稱
B、關(guān)于原點(diǎn)對(duì)稱
C、關(guān)于x軸對(duì)稱
D、關(guān)于直線y=x對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={1,2,6},集合B={1,2,3},那么A∪B=( 。
A、{1,2}
B、{6}
C、{1,2,3,6}
D、1,2,3,6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b為正實(shí)數(shù),若
1
b
-
1
a
=1,判斷a-b與1的大小關(guān)系,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案