在平面直角坐標(biāo)系下,曲線 為參數(shù)),曲線為參數(shù)).若曲線、有公共點(diǎn),則實(shí)數(shù)的取值范圍_____.
 ( 或  )  
解:曲線C1:x="2t+2a" y=-t  (t為參數(shù))即  x+2y-2a=0,表示一條直線.
曲線C2: x=2cosθ y=2+2sinθ  (a為參數(shù)) 即  x2+(y-2)2=4,表示圓心為(0,2),半徑等于2的圓.由曲線Cl、C2有公共點(diǎn),可得圓心到直線的距離小于或等于半徑,
∴|0+4-2a|  / ≤2,∴2-  ≤a≤2+ ,故答案為:[2-  ,2+  ].
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知拋物線,過點(diǎn)的直線與拋物線交于兩點(diǎn),且直線軸交于點(diǎn).(1)求證:,,成等比數(shù)列;
(2)設(shè),,試問是否為定值,若是,求出此定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,且經(jīng)過點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存過點(diǎn)(2,1)的直線與橢圓相交于不同的兩點(diǎn),滿足?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在ΔABC中,頂點(diǎn)A,B, C所對(duì)三邊分別是a,b,c已知B(-1, 0), C(1, 0),且b,a, c成等差數(shù)列.
(I )求頂點(diǎn)A的軌跡方程;
(II) 設(shè)頂點(diǎn)A的軌跡與直線y=kx+m相交于不同的兩點(diǎn)M、N,如果存在過點(diǎn)P(0,-)的直線l,使得點(diǎn)M、N關(guān)于l對(duì)稱,求實(shí)數(shù)m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,討論方程所表示的圓錐曲線類型,并求其焦點(diǎn)坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為2,
(1)試求橢圓的方程;
(2)若斜率為的直線與橢圓交于、兩點(diǎn),點(diǎn)為橢圓上一點(diǎn),記直線的斜率為,直線的斜率為,試問:是否為定值?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=x2-x與x軸圍成的圖形的面積為
A.B.1C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

圓錐曲線的準(zhǔn)線方程是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

求橢圓(  )。
A.4 B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案