17.(ax2+$\frac{1}{x}$)6展開式的常數(shù)項為15,則實數(shù)a=±1.

分析 利用通項公式即可得出.

解答 解:Tr+1=${∁}_{6}^{r}(\frac{1}{x})^{6-r}(a{x}^{2})^{r}$=${a}^{r}{∁}_{6}^{r}$x3r-6,
令3r-6=0,解得r=2.
∴${a}^{2}{∁}_{6}^{2}$=15,解得a=±1.
故答案為:±1.

點評 本題考查了二項式定理的應(yīng)用,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓M過點A(0,$\sqrt{3}$),B(1,0),C(-3,0).
(Ⅰ)求圓M的方程;
(Ⅱ)過點(0,2)的直線l與圓M相交于D、E兩點,且|DE|=2$\sqrt{3}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知拋物線y2=2x,兩點M(1,0),N(3,0).
(Ⅰ)求點M到拋物線準(zhǔn)線的距離;
(Ⅱ)過點M的直線l交拋物線于兩點A,B,若拋物線上存在一點R,使得A,B,N,R四點構(gòu)成平行四邊形,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,將全體正奇數(shù)排成一個三角形數(shù)陣,根據(jù)以上排列規(guī)律,數(shù)陣中第8行(從上向下數(shù))第3個數(shù)(從左向右數(shù))是95.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若將函數(shù)f(x)=$\frac{1}{2}$sin(2x+$\frac{π}{3}$)圖象上的每一個點都向左平移$\frac{π}{3}$個單位,得到g(x)的圖象,則函數(shù)g(x)的單調(diào)遞增區(qū)間為( 。
A.[kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$](k∈Z)B.[kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$](k∈Z)
C.[kπ-$\frac{2π}{3}$,kπ-$\frac{π}{6}$](k∈Z)D.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={x|0<x<3},B={x|(x+2)(x-1)>0},則A∩B等于( 。
A.(0,3)B.(1,3)C.(2,3)D.(-∞,-2)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如果x=[x]+{x},[x]∈Z,0≤{x}<1,就稱[x]表示x的整數(shù)部分,{x}表示x的小數(shù)部分.已知數(shù)列{an}滿足a1=$\sqrt{5}$,an+1=[an]+$\frac{1}{\{{a}_{n}\}}$,則a2017等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知平行四邊形三個頂點的坐標(biāo)分別為A(-3,0),B(2,-2),C(5,2),則第四個頂點D的坐標(biāo)不可能是( 。
A.(10,0)B.(0,4)C.(-6,-4)D.(6,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)關(guān)于x的方程x2+(m-3)x+3-2m=0的兩個實數(shù)根為α、β,求:(α-2)2+(β-2)2的最小值.

查看答案和解析>>

同步練習(xí)冊答案