5.如圖,將全體正奇數(shù)排成一個三角形數(shù)陣,根據(jù)以上排列規(guī)律,數(shù)陣中第8行(從上向下數(shù))第3個數(shù)(從左向右數(shù))是95.

分析 斜著看,根據(jù)數(shù)陣的排列規(guī)律確定第10行(n≥3)從左向右的第3個數(shù)為第$\frac{10×9}{2}$+3=48個奇數(shù)即可.

解答 解:根據(jù)三角形數(shù)陣可知,斜著看,第n斜行奇數(shù)的個數(shù)為n個,則前n-1斜行奇數(shù)的總個數(shù)為1+2+3+…+(n-1)=$\frac{n(n-1)}{2}$,
則斜著看,第10行(n≥3)從左向右的第3個數(shù)為第$\frac{10×9}{2}$+3=48個奇數(shù),
所以數(shù)陣中第8行(從上向下數(shù))第3個數(shù)(從左向右數(shù))是2×48-1=95.
 故答案為95.

點評 本題主要考查歸納推理的應用,利用等差數(shù)列的通項公式是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

15.不等式3+5x-2x2>0的解集為( 。
A.(-3,$\frac{1}{2}$)B.(-∞,-3)∪($\frac{1}{2}$,+∞)C.(-$\frac{1}{2}$,3)D.(-∞,-$\frac{1}{2}$)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知F1為橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左焦點,過F1的直線l與橢圓交于兩點P,Q.
(Ⅰ)若直線l的傾斜角為45°,求|PQ|;
(Ⅱ)設(shè)直線l的斜率為k(k≠0),點P關(guān)于原點的對稱點為P′,點Q關(guān)于x軸的對稱點為Q′,P′Q′所在直線的斜率為k′.若|k′|=2,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.在平面直角坐標系xoy中,A,B是圓x2+y2=4上的兩個動點,且AB=2,則線段AB中點M的軌跡方程為x2+y2=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.在平面直角坐標系xOy中,F(xiàn)1,F(xiàn)2分別為橢圓$\frac{x^2}{9}+\frac{y^2}{4}=1$的左、右焦點,若點P在橢圓上,且PF1=2,則PF2的值是4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,在平面直角坐標系xOy中,點$P(1,\frac{3}{2})$和動點Q(m,n)都在離心率為$\frac{1}{2}$的橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)上,其中m<0,n>0.
(1)求橢圓的方程;
(2)若直線l的方程為3mx+4ny=0,點R(點R在第一象限)為直線l與橢圓的一個交點,點T在線段OR上,且QT=2.
①若m=-1,求點T的坐標;
②求證:直線QT過定點S,并求出定點S的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.(ax2+$\frac{1}{x}$)6展開式的常數(shù)項為15,則實數(shù)a=±1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若一圓弧長等于它所在圓的內(nèi)接正三角形的邊長,則該弧所對的圓心角弧度數(shù)為(  )
A.$\frac{π}{3}$B.$\sqrt{3}$C.$\frac{2π}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.方程$\frac{x|x|}{16}+\frac{y|y|}{9}=-1$的曲線即為函數(shù)y=f(x)的圖象,對于函數(shù)y=f(x),有如下結(jié)論:
①f(x)在R上單調(diào)遞減;
②函數(shù)F(x)=4f(x)+3x不存在零點;
③y=f(|x|)的最大值為3;
④若函數(shù)g(x)和f(x)的圖象關(guān)于原點對稱,則y=g(x)由方程$\frac{y|y|}{16}+\frac{x|x|}{9}=1$確定.
其中所有正確的命題序號是( 。
A.③④B.②③C.①④D.①②

查看答案和解析>>

同步練習冊答案