已知圓M:2x2+2y2-8x-8y-1=0和直線l:x+y-9=0 . 過直線l 上一點A作△ABC,使

∠BAC=45°,AB過圓心M,且B,C在圓M上.

⑴當A的橫坐標為4時,求直線AC的方程;

⑵求點A的橫坐標的取值范圍.

【解】:⑴依題意M(2,2),A(4,5),,設(shè)直線AC的斜率為,則,解得 或,故所求直線AC的方程為5x+y-25=0或x-5y+21=0;

⑵圓的方程可化為(x-2)2+(y-2)2,設(shè)A點的橫坐標為a。則縱坐標為9-a;

a≠2時,,設(shè)AC的斜率為k,把∠BAC看作AB到AC的角,

則可得,直線AC的方程為y-(9-a)=(xa)

即5x-(2a-9)y-2a2+22a-81=0,

又點C在圓M上,所以只需圓心到AC的距離小于等于圓的半徑,即,化簡得a2-9a+18≤0,解得3≤a≤6;

②當a=2時,則A(2,7)與直線 x=2成45°角的直線為y-7=x-2即xy+5=0,

M到它的距離,這樣點C不在圓M上,還有x+y-9=0,顯然也不滿足條件,故A點的橫坐標范圍為[3,6]。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M:2x2+2y2-8x-8y-1=0和直線l:x+y-9=0過直線l上一點A作△ABC,使∠BAC=45°,AB過圓心M,且B,C在圓M上.
(1)當A的橫坐標為4時,求直線AC的方程;
(2)求點A的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M:(x+
5
2+y2=36,定點N(
5
,0),點P為圓M上的動點,點Q在NP上,點G在MP上,且滿足
NP
=2
NQ
,
GQ
NP
=0.
(I)求點G的軌跡C的方程;
(II)點F(x,y)在軌跡C上,求2x2+y的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年河南省鄭州外國語學(xué)校高二(上)第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知圓M:(x+2+y2=36,定點N(,0),點P為圓M上的動點,點Q在NP上,點G在MP上,且滿足=2=0.
(I)求點G的軌跡C的方程;
(II)點F(x,y)在軌跡C上,求2x2+y的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年湖北省部分重點中學(xué)聯(lián)考高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知圓M:2x2+2y2-8x-8y-1=0和直線l:x+y-9=0過直線 上一點A作△ABC,使∠BAC=45°,AB過圓心M,且B,C在圓M上.
(1)當A的橫坐標為4時,求直線AC的方程;
(2)求點A的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省武漢市武昌區(qū)高二(上)10月月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知圓M:2x2+2y2-8x-8y-1=0和直線l:x+y-9=0過直線 上一點A作△ABC,使∠BAC=45°,AB過圓心M,且B,C在圓M上.
(1)當A的橫坐標為4時,求直線AC的方程;
(2)求點A的橫坐標的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案