解:(1)由已知得橢圓的半長軸a=2,半焦距c=,則半短軸b=1.
又橢圓的焦點在x軸上, ∴橢圓的標(biāo)準方程為
(2)設(shè)線段PA的中點為M(x,y) ,點P的坐標(biāo)是(x0,y0),
,得
由,點P在橢圓上,得,
∴線段PA中點M的軌跡方程是

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程設(shè)橢圓的普通方程為
(1)設(shè)為參數(shù),求橢圓的參數(shù)方程;
(2)點是橢圓上的動點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是橢圓的兩個焦點,是橢圓上的點,且
(1)求的周長;
(2)求點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
已知橢圓的焦點分別為,且過點
(1)求橢圓的標(biāo)準方程;
(2)設(shè)為橢圓內(nèi)一點,直線交橢圓兩點,且為線段的中點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線C:,為拋物線上一點,關(guān)于軸對稱的點,為坐標(biāo)原點.
(1)若,求點的坐標(biāo);
(2)若過滿足(1)中的點作直線交拋物線兩點, 且斜率分別為,且,求證:直線過定點,并求出該定點坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分)已知A(1,1)是橢圓)上一點,F1­,F(xiàn)2
 
是橢圓上的兩焦點,且滿足 .
(I)求橢圓方程;
(Ⅱ)設(shè)C,D是橢圓上任兩點,且直線AC,AD的斜率分別為  ,若存在常數(shù) 使/,求直線CD的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)雙曲線 (a>1,b>0)的焦距為2c,直線過點(a,0)和(0,b),且點(1,0)到直線 的距離與點(-1,0)到直線的距離之和s≥c.求雙曲線的離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

極坐標(biāo)方程表示的圖形是(    )

A.兩個圓 B.一個圓和一條直線
C.一個圓和一條射線 D.一條直線和一條射線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

在極坐標(biāo)系中,圓ρ=2cos θ的垂直于極軸的兩條切線方程分別為(  )

A.θ=0(ρ∈R)和ρcos θ=2
B.θ(ρ∈R)和ρcos θ=2
C.θ(ρ∈R)和ρcos θ=1
D.θ=0(ρ∈R)和ρcos θ=1

查看答案和解析>>

同步練習(xí)冊答案