16.已知$sinx=-\frac{2}{5}(π<x<\frac{3π}{2})$,則x=$π+arcsin\frac{2}{5}$(用反正弦表示)

分析 本題是一個知道三角函數(shù)值及角的取值范圍,求角的問題,由于本題中所涉及的角不是一個特殊角,故需要用反三角函數(shù)表示出答案

解答 解:由于arcsin$\frac{2}{5}$ 表示[-$\frac{π}{2}$,$\frac{π}{2}$]上正弦值等于$\frac{2}{5}$的一個銳角,
由$sinx=-\frac{2}{5}(π<x<\frac{3π}{2})$,則x=$π+arcsin\frac{2}{5}$,
故答案為:$π+arcsin\frac{2}{5}$.

點評 本題考查反三角函數(shù)的運用,解題的關(guān)鍵理解反三角函數(shù)的定義,用正確的形式表示出符號條件的角,本題重點是理解反三角函數(shù)定義,難點表示出符合條件的角,反三角函數(shù)在新教材省份已經(jīng)不是高中數(shù)學(xué)學(xué)習(xí)內(nèi)容.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.己知三點A(-3,3),B(0,1)和C(1,0),則|$\overrightarrow{AB}$+$\overrightarrow{BC}$|=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知m,n∈N*,f(x)=(1+x)m+(1+x)n展開式中x的系數(shù)為19,則當(dāng)x2的系數(shù)最小時展開式中x7的系數(shù)為156.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.實數(shù)x取什么值時,復(fù)數(shù)z=(x2-2x-3)+(x2+3x+2)i(i為虛數(shù)單位);
(1)是實數(shù)?
(2)對應(yīng)的點位于復(fù)平面的第二象限?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.關(guān)于x的方程${π^x}=\frac{a+1}{2-a}$只有正實數(shù)解,則a的取值范圍是($\frac{1}{3}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知集合A={f(x)|f(x)+f(x+2)=f(x+1)},$g(x)=sin(\frac{πx}{3})$.
(1)求證:g(x)∈A;
(2)g(x)是周期函數(shù),據(jù)此猜想A中的元素一定是周期函數(shù),判斷該猜想是否正確,并證明你的結(jié)論;
(3)g(x)是奇函數(shù),據(jù)此猜想A中的元素一定是奇函數(shù),判斷該猜想是否正確,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知正實數(shù)a,b滿足ab=1,則2a+b的最小值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,CB=3,CA=4,$|{\overrightarrow{CA}+\overrightarrow{CB}}|=|{\overrightarrow{CA}-\overrightarrow{CB}}|$,M是線段AB上的動點(含A,B兩個端點).若$\overrightarrow{C{M}}=x\overrightarrow{C{A}}+y\overrightarrow{C{B}}$,(x,y∈R),則|x$\overrightarrow{CA}$-y$\overrightarrow{CB}$|的取值范圍是[$\frac{12}{5}$,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某市為了解今年高中畢業(yè)生的身體素質(zhì)狀況,從本市某校高中畢業(yè)班中抽取一個班進行實心球測試,成績在8米及以上的為合格.把所得數(shù)據(jù)整理后,分成六組得到頻率分布直方圖的一部分(如圖).已知前五個小組的頻率分別為0.06.0.10,0.14,0.28,0.30.第六小組的頻數(shù)是6.
(1)求這次測試合格的人數(shù);
(2)用分層抽樣方法在第5、6組的學(xué)生中抽取容量為7的一個樣本,將該樣本看作一個總體,從中抽取2人,求恰有一人在第六組的概率.
(3)經(jīng)過多次測試發(fā)現(xiàn),甲的成績在8~10米之間,乙的成績在9~10米之間現(xiàn)兩人各投一次,求甲投得比乙遠的概率.

查看答案和解析>>

同步練習(xí)冊答案