3.已知數(shù)列{an}滿足a1+$\frac{a_2}{2}+…+\frac{a_n}{n}={2^{n+1}}$(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn

分析 (Ⅰ)求得n=1的首項(xiàng),將n換為n-1,相減即可得到所求通項(xiàng)公式;
(Ⅱ)設(shè){an}的前n項(xiàng)和為Sn,則${S_n}=4+2×{2^2}+3×{2^3}+…+n×{2^n}(n≥2,n∈N*)$,兩邊乘以2,作差后運(yùn)用等比數(shù)列的求和公式,化簡計(jì)算即可得到所求和.

解答 解:(Ⅰ)當(dāng)n=1時(shí),由題設(shè)知a1=4;
當(dāng)n≥2時(shí),由題設(shè)${a_1}+\frac{a_2}{2}+…+\frac{a_n}{n}={2^{n+1}}$,知${a_1}+\frac{a_2}{2}+…+\frac{{{a_{n-1}}}}{n-1}={2^n}$,
兩式相減得$\frac{a_n}{n}={2^{n+1}}-{2^n}$,
即${a_n}=n•{2^n}(n≥2)$,
故{an}的通項(xiàng)公式為${a_n}=\left\{\begin{array}{l}4,(n=1)\\ n•{2^n},(n≥2,n∈N*)\end{array}\right.$;
(Ⅱ)設(shè){an}的前n項(xiàng)和為Sn,
則${S_n}=4+2×{2^2}+3×{2^3}+…+n×{2^n}(n≥2,n∈N*)$,$2{S_n}=2×4+2×{2^3}+3×{2^4}+…+(n-1)×{2^n}+n×{2^{n+1}}(n≥2,n∈N*)$,
兩式相減得$-{S_n}=4-8+8+({2^3}+{2^4}+…+{2^n})-n×{2^{n+1}}$
=4+$\frac{8(1-{2}^{n-2})}{1-2}$-n×2n+1
化簡得${S_n}=(n-1)•{2^{n+1}}+4$,
當(dāng)n=1時(shí),S1=4,滿足Sn,
所以${S_n}=(n-1)•{2^{n+1}}+4$.

點(diǎn)評 本題考查數(shù)列的通項(xiàng)公式的求法,注意運(yùn)用數(shù)列的遞推式,考查數(shù)列的求和方法:錯(cuò)位相減法,考查等比數(shù)列的求和公式的運(yùn)用,以及化簡整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,程序的循環(huán)次數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=2$\sqrt{3}$sin($\frac{π}{4}$+$\frac{x}{2}$)•sin($\frac{π}{4}$-$\frac{x}{2}$)-sin(π+x),且函數(shù)y=g(x)的圖象與函數(shù)y=f(x)的圖象關(guān)于直線x=$\frac{π}{4}$對稱.
(Ⅰ)求函數(shù)g(x)的解析式;
(Ⅱ)若存在x∈[0,$\frac{π}{2}$),使等式[g(x)]2-mg(x)+2=0成立,求實(shí)數(shù)m的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$\root{3}{2+\frac{2}{7}}$=2$\root{3}{\frac{2}{7}}$,$\root{3}{3+\frac{3}{26}}$=3$\root{3}{\frac{3}{26}}$,$\root{3}{4+\frac{4}{63}}$=4$\root{3}{\frac{4}{63}}$,…,$\root{3}{2017+\frac{m}{n}}$=2017$\root{3}{\frac{m}{n}}$,則$\frac{n+1}{{m}^{2}}$=2017.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.甲乙兩家快遞公司其“快遞小哥”的日工資方案如下:甲公司規(guī)定底薪70元,每單抽成1元;乙公司規(guī)定底薪100元,每日前45單無抽成,超過45單的部分每單抽成6元
(1)設(shè)甲乙快遞公司的“快遞小哥”一日工資y(單位:元)與送貨單數(shù)n的函數(shù)關(guān)系式為f(n),g(n),求f(n),g(n);
(2)假設(shè)同一公司的“快遞小哥”一日送貨單數(shù)相同,現(xiàn)從兩家公司各隨機(jī)抽取一名“快遞小哥”,并記錄其100天的送貨單數(shù),得到如下條形圖:
若將頻率視為概率,回答下列問題:
①記乙快遞公司的“快遞小哥”日工資為X(單位:元),求X的分布列和數(shù)學(xué)期望;
②小趙擬到兩家公司中的一家應(yīng)聘“快遞小哥”的工作,如果僅從日收入的角度考慮,請你利用所學(xué)的統(tǒng)計(jì)學(xué)知識為他作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.觀察算式,21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…用你所發(fā)現(xiàn)的規(guī)律得出22010的末位數(shù)字是( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若a<b<0,c<d<0,則下列不等式一定成立的是(  )
A.ac>bdB.ac<bdC.$\frac{a}<\fracdtfgxvn{c}$D.$\frac{a}>\fracvsbcl5x{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知隨機(jī)變量ξ服從正態(tài)分布N(0,δ2),且P(ξ>2)=0.023,則P(ξ<-2)等于( 。
A.0.977B.0.023C.0.477D.0.628

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.記定義在R上的函數(shù)y=f(x)的導(dǎo)函數(shù)為f'(x),如果存在x0∈[a,b],使得f(b)-f(a)=f'(x0)(b-a)成立,則稱x0為函數(shù)f(x)在區(qū)間[a,b]上的“中值點(diǎn)”.那么函數(shù)f(x)=x3-3x在區(qū)間[-2,2]上“中值點(diǎn)”的個(gè)數(shù)為(  )
A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊答案