12.已知隨機變量ξ服從正態(tài)分布N(0,δ2),且P(ξ>2)=0.023,則P(ξ<-2)等于( 。
A.0.977B.0.023C.0.477D.0.628

分析 利用正態(tài)分布的對稱性即可得出答案.

解答 解:∵ξ~N(0,δ2),
∴P(ξ<-2)=P(ξ>2)=0.023.
故選B.

點評 本題考查了正態(tài)分布的對稱性特點,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若偶函數(shù)f(x)在(-∞,0]上單調(diào)遞減,a=f(log23),b=f(log43),c=f($2^{\frac{3}{2}}$),則a,b,c滿足( 。
A.a<b<cB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}滿足a1+$\frac{a_2}{2}+…+\frac{a_n}{n}={2^{n+1}}$(n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20..某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$24\sqrt{3}$B.$8\sqrt{3}$C.$\frac{{8\sqrt{3}}}{3}$D.$\frac{{10\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知平行四邊形ABCD的對角線相交于點O,點P在△COD的內(nèi)部(不含邊界).若$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$,則實數(shù)對(x,y)可以是( 。
A.($\frac{1}{3}$,$\frac{2}{3}$)B.($\frac{1}{4}$,-$\frac{3}{4}$)C.($\frac{3}{5}$,$\frac{1}{5}$)D.($\frac{3}{7}$,$\frac{5}{7}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知O、A、B三點不共線,P為該平面內(nèi)一點,且$\overrightarrow{OP}=\overrightarrow{OA}+\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|}}$,則( 。
A.點P在線段AB 上B.點P在線段AB的延長線上
C.點P在線段AB的反向延長線上D.點P在射線AB上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知$\overrightarrow a=(x-1,2),\overrightarrow b=(4,-x)$,當(dāng)$\overrightarrow a⊥\overrightarrow b$時,
(1)求此時$\overrightarrow a+\overrightarrow b$與$\overrightarrow a-\overrightarrow b$的夾角正弦值;
(2)求向量$t\overrightarrow a+(1-t)\overrightarrow b$模長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-1,3),則|2$\overrightarrow{a}$-$\overrightarrow$|=( 。
A.2B.$\sqrt{2}$C.10D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)在R上有定義,且滿足f(x)+xf(1-x)=x.
(1)試求f(x)的解析式;
(2)若f(x)>a恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案