12.某三棱錐的三視圖如圖所示,已知該三棱錐的外接球的表面積為12π,則此三棱錐的體積為( 。
A.4B.$\frac{4}{3}$C.$\frac{8}{3}$D.$\frac{1}{3}$

分析 利用三視圖畫出幾何體的圖形,利用三視圖的數(shù)據(jù)求解幾何體的體積即可.

解答 解:由三視圖知該三棱錐為正方體中截得的三棱錐D1-ABC(如圖),故其外接球的半徑為$\frac{{\sqrt{3}}}{2}a$,所以$4π{(\frac{{\sqrt{3}}}{2}a)^2}=12π$,解得a=2,所以該三棱錐的體積$V=\frac{1}{3}×\frac{1}{2}×2×2×2=\frac{4}{3}$.
故選:B.

點評 本題考查三視圖求解幾何體的體積,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.過點A(a,0),(a>0),且垂直于極軸的直線l的極坐標(biāo)方程為( 。
A.ρsinθ=aB.ρcosθ=aC.x=aD.y=a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)等差數(shù)列{an}的前n項和為Sn,若a5=3,S10=40,則nSn的最小值為-32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),曲線C2的極坐標(biāo)方程為ρ=-2cosθ+4sinθ.
(Ⅰ)將曲線C1的參數(shù)方程化為普通方程,曲線C2的極坐標(biāo)方程化為直角坐標(biāo)方程.
(Ⅱ)曲線C1,C2是否相交,若不相交,請說明理由;若交于一點,則求出此點的極坐標(biāo);若交于兩點,則求出過兩點的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在極坐標(biāo)系中,設(shè)直線l過點A($\sqrt{3}$,$\frac{π}{6}$),B(a,0),且直線l與曲線C:ρ=cosθ有且只有一個公共點,求正數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在直角梯形ABCD中,AB⊥AD,AD∥BC,AB=BC=2AD=2,E,F(xiàn)分別為BC,CD的中點,以A為圓心,AD為半徑的半圓分別交BA及其延長線于點M,N,點P在$\widehat{MDN}$上運動(如圖).若$\overrightarrow{AP}=λ\overrightarrow{AE}+μ\overrightarrow{BF}$,其中λ,μ∈R,則2λ-5μ的取值范圍是( 。
A.[-2,2]B.$[{-2,2\sqrt{2}}]$C.$[{-2\sqrt{2},2}]$D.$[{-2\sqrt{2},2\sqrt{2}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}-{2^x},x<2\\{log_3}({x^2}-1),x≥2\end{array}$,若f(a)=1,則a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若隨機(jī)變量X服從正態(tài)分布N(4,1),則P(x>6)的值為(  )(參考數(shù)據(jù):若隨機(jī)變量X~N(μ,σ2),則P(μ-σ<x<μ+σ)=0.6826,P(μ-2σ<x<μ+2σ)=0.9544,P(μ-3σ<x<μ+3σ)=0.9974)
A.0.1587B.0.0228C.0.0013D.0.4972

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.我國古代數(shù)學(xué)名著《九章算術(shù)》有“米谷粒分”題:發(fā)倉募糧,所募粒中秕不百三則收之(不超過3%),現(xiàn)抽樣取米一把,取得235粒米中夾秕n粒,若這批米合格,則n不超過( 。
A.6粒B.7粒C.8粒D.9粒

查看答案和解析>>

同步練習(xí)冊答案