2.過點A(a,0),(a>0),且垂直于極軸的直線l的極坐標(biāo)方程為( 。
A.ρsinθ=aB.ρcosθ=aC.x=aD.y=a

分析 如圖所示,設(shè)直線l的任意一點P(ρ,θ).利用直角三角形的邊角關(guān)系即可得出.

解答 解:如圖所示,設(shè)直線l的任意一點P(ρ,θ).
則$ρ=\frac{a}{cosθ}$,即a=ρcosθ.
故選:B.

點評 本題考查了極坐標(biāo)方程方程、直角三角形的邊角關(guān)系,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在直角坐標(biāo)系xoy中,直線l:$\left\{\begin{array}{l}x=-\sqrt{2}+tcosα\\ y=tsinα\end{array}\right.(t為參數(shù),0≤α<\frac{π}{2})$,在以原點O為極點,x軸的正半軸為極軸的極坐標(biāo)系中,曲線C:${ρ^2}=\frac{3}{{1+2{{sin}^2}θ}}(0≤θ<2π)$,若直線與y軸正半軸交于點M,與曲線C交于A、B兩點,其中點A在第一象限.
(Ⅰ)求曲線C的直角坐標(biāo)方程及點M對應(yīng)的參數(shù)tM(用α表示);
(Ⅱ)設(shè)曲線C的左焦點為F1,若|F1B|=|AM|,求直線l的傾斜角α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知向量$\vec a=(sinx,-1),\vec b=(\sqrt{3}cosx,-\frac{1}{2})$,函數(shù)$f(x)=({\vec a+\vec b})•\vec a-1$.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,若$f(\frac{A}{2})=\frac{3}{2}$,a=2,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.直角坐標(biāo)方程的x2+y2-2x+3y=0極坐標(biāo)方程為ρ=2cosθ-3sinθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某樣本數(shù)據(jù)如表:由該樣本數(shù)據(jù)得到的回歸方程為$\widehat{y}$=$\widehat$x+$\widehat{a}$.若$\widehat{a}$=7.9,則$\widehat$的值為( 。
x34567
y4.02.5-0.50.5-2.0
A.1.4B.-1.4C.1.2D.-1.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某設(shè)備的使用年限x與所支出的維修費用y的統(tǒng)計數(shù)據(jù)如表:
使用年限x(單位:年)23456
維修費用y(單位:萬元)1.54.55.56.57.0
根據(jù)表可得回歸直線方程為$\stackrel{∧}{y}$=1.3x+$\stackrel{∧}{a}$,據(jù)此模型預(yù)測,若使用年限為14年,估計維修費用約為18萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)滿足xf′(x)-f(x)=xex且f(-1)=$\frac{1}{e}$,則x<0時f(x)=( 。
A.既有極大值又有極小值B.有極大值無極小值
C.既無極大值又無極小值D.有極小值無極大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在一次實驗中,測得(x,y)的四組值分別是A(6,2),B(8,3),C(10,5),D(12,6),則y與x之間的回歸直線方程為( 。
A.$\hat y=2.3x-0.7$B.$\hat y=2.3x+0.7$C.$\hat y=0.7x-2.3$D.$\hat y=0.7x+2.3$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某三棱錐的三視圖如圖所示,已知該三棱錐的外接球的表面積為12π,則此三棱錐的體積為( 。
A.4B.$\frac{4}{3}$C.$\frac{8}{3}$D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案