設(shè), 已知函數(shù)
(Ⅰ) 證明在區(qū)間(-1,1)內(nèi)單調(diào)遞減, 在區(qū)間(1, + ∞)內(nèi)單調(diào)遞增;
(Ⅱ) 設(shè)曲線在點(diǎn)處的切線相互平行, 且 證明.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)已知函數(shù).
(1)當(dāng)時(shí),求在最小值;
(2)若存在單調(diào)遞減區(qū)間,求的取值范圍;
(3)求證:().
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)().
(Ⅰ)當(dāng)時(shí),求函數(shù)的極值;
(Ⅱ)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)若x=1時(shí)取得極值,求實(shí)數(shù)的值;
(2)當(dāng)時(shí),求在上的最小值;
(3)若對(duì)任意,直線都不是曲線的切線,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)與的圖像都過點(diǎn),且它們?cè)邳c(diǎn)處有公共切線.
(1)求函數(shù)和的表達(dá)式及在點(diǎn)處的公切線方程;
(2)設(shè),其中,求的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知 函數(shù)
(1)已知任意三次函數(shù)的圖像為中心對(duì)稱圖形,若本題中的函數(shù)圖像以為對(duì)稱中心,求實(shí)數(shù)和的值
(2)若,求函數(shù)在閉區(qū)間上的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知函數(shù)f(x)=Asin(ωx+φ)(A>0,|φ|<)圖像上一個(gè)最高點(diǎn)坐標(biāo)為(2,2),這個(gè)最高點(diǎn)到相鄰最低點(diǎn)的圖像與x軸交于點(diǎn)(5,0).
(1)求f(x)的解析式;
(2)是否存在正整數(shù)m,使得將函數(shù)f(x)的圖像向右平移m個(gè)單位后得到一個(gè)偶函數(shù)的圖像?若存在,求m的最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在點(diǎn)處取得極小值-4,使其導(dǎo)數(shù)的的取值范圍為,求:
(1)的解析式;
(2),求的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)判斷奇偶性, 并求出函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com