17.已知反比例函數(shù)y=$\frac{6}{x}$的圖象與正比例函數(shù)y=$\frac{2}{3}$x的圖象交于A,B兩點(diǎn),B點(diǎn)坐標(biāo)為(-3,-2),則A點(diǎn)的坐標(biāo)為( 。
A.(-1,-6)B.(1,6)C.(3,2)D.(2,3)

分析 根據(jù)題意,知點(diǎn)A與B關(guān)于原點(diǎn)對稱,即可得出結(jié)論.

解答 解:根據(jù)題意,知點(diǎn)A與B關(guān)于原點(diǎn)對稱,
∵點(diǎn)B的坐標(biāo)是(-3,-2),∴A點(diǎn)的坐標(biāo)為(3,2).
故選C.

點(diǎn)評 本題考查函數(shù)的圖象,考查點(diǎn)的對稱性,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦點(diǎn)為F$(-\sqrt{2},0)$,離心率e=$\frac{\sqrt{2}}{2}$,M、N是橢圓上的動(dòng)點(diǎn).
(Ⅰ)求橢圓標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)動(dòng)點(diǎn)P滿足:$\overrightarrow{OP}=\overrightarrow{OM}+2\overrightarrow{ON}$,直線OM與ON的斜率之積為-$\frac{1}{2}$,問:是否存在定點(diǎn)F1,F(xiàn)2,使得|PF1|+|PF2|為定值?若存在,求出F1,F(xiàn)2的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC中,若∠BAC=60°,AB=5,AC=6,則△ABC的面積S=$\frac{15\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知曲線C1:$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$ (t為參數(shù)),C2:$\left\{\begin{array}{l}{x=8cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù)).
(Ⅰ)化C1,C2的方程為普通方程,并寫出C1的極坐標(biāo)方程;
(Ⅱ)若C1上的點(diǎn)P對應(yīng)的參數(shù)為t=$\frac{π}{2}$,Q為C2上的動(dòng)點(diǎn),求PQ中點(diǎn)M到直線C3=$\left\{\begin{array}{l}{x=3+2t}\\{y=-2+t}\end{array}\right.$  (t為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.過y2=4x的焦點(diǎn)F作兩條弦AB和CD,且AB⊥x軸,|CD|=2|AB|,則弦CD所在直線的方程是x+y+1=0或x+y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.觀察下列砌鋼管的橫截面圖:

則第n個(gè)圖的鋼管數(shù)是$\frac{3}{2}{n^2}+\frac{3}{2}n$.(用含n的式子表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在平面直角坐標(biāo)系xOy中,以C(1,1)為圓心的圓與x軸和y軸分別相切于A,B兩點(diǎn),點(diǎn)M,N分別在線段OA,OB上,若,MN與圓C相切,則|MN|的最小值為(  )
A.1B.$2-\sqrt{2}$C.$2\sqrt{2}+2$D.$2\sqrt{2}-2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.給出定義:如果函數(shù)f(x)在區(qū)間[a,b]上可導(dǎo),其導(dǎo)函數(shù)為f'(x),且?x1,x2∈(a,b),當(dāng)x1≠x2時(shí)總滿足:f'(x1)=$\frac{f(b)-f(a)}{b-a}$,f'(x2)=$\frac{f(a)-f(b)}{a-b}$,則稱實(shí)數(shù)x1,x2為[a,b]上的“希望數(shù)”,函數(shù)f(x)為[a,b]上的“希望函數(shù)”.如果函數(shù)f(x)=$\frac{1}{3}$x3-x2+k是[0,k]上的“希望函數(shù)”,那么實(shí)數(shù)k的取值范圍是( 。
A.($\frac{3}{2}$,3)B.(2,3)C.($\frac{3}{2}$,2$\sqrt{3}$)D.(2,2$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知正四棱錐的側(cè)棱與底面成60°角,則此四棱錐的底邊與不相鄰的側(cè)棱所成角的余弦值是$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

同步練習(xí)冊答案