6.已知函數(shù)h(x)=4x2-kx-8在[5,20]上是減函數(shù),則k的取值范圍是(-∞,40].

分析 利用二次函數(shù)的性質(zhì)列出不等式,由此求得k的取值范圍.

解答 解:由于二次函數(shù)h(x)=4x2-kx-8的對(duì)稱軸為x=$\frac{k}{8}$,開(kāi)口向上,
且在[5,20]上是減函數(shù),∴$\frac{k}{8}$≤5,求得k≤40,
故答案為:(-∞,40].

點(diǎn)評(píng) 本題主要考查二次函數(shù)的性質(zhì)應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.(1)已知冪函數(shù)f(x)=(-2m2+m+2)x-2m+1為偶函數(shù),求函數(shù)f(x)的解析式;
(2)已知x+x-1=3(x>1),求x2-x-2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.計(jì)算$\root{3}{(2-π)^{3}}$+$\sqrt{(3-π)^{2}}$的值為( 。
A.5B.-1C.2π-5D.5-2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知點(diǎn)A(0,2),B(4,6),$\overrightarrow{OM}$=t1$\overrightarrow{OA}$+t2$\overrightarrow{AB}$,其中t1、t2為實(shí)數(shù);
(1)若點(diǎn)M在第二或第三象限,且t1=2,求t2的取值范圍;
(2)求證:當(dāng)t1=1時(shí),不論t2為何值,A、B、M三點(diǎn)共線;
(3)若t1=a2,$\overrightarrow{OM}$⊥$\overrightarrow{AB}$,且△ABM的面積為12,求a和t2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知a>1,x≥1,y≥1,且loga2x+loga2y=loga(a4x4)+loga(a4y4),則loga(xy)的取值范圍是[$2\sqrt{3}-2$,$4+4\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.令a=0.20.1,b=log0.20.1,則有( 。
A.b>1>aB.a>1>bC.a>b>1D.1>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知y=x2+4ax-2在區(qū)間(-∞,4]上為減函數(shù),則a的取值范圍是(-∞,-2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知f(x2-1)定義域?yàn)閇0,3],則f(2x-1)的定義域?yàn)椋ā 。?table class="qanwser">A.[1,$\frac{3}{2}$]B.[0,$\frac{9}{2}$]C.[-3,15]D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.程序框圖如圖所示,該程序運(yùn)行后輸出的S的值是( 。
A.-$\frac{2}{4029}$B.-$\frac{2}{4030}$C.-$\frac{2}{4031}$D.-$\frac{2}{4033}$

查看答案和解析>>

同步練習(xí)冊(cè)答案