15.已知角α的終邊經過點P(6,-8),點P到原點的距離為r=( 。
A.14B.±10C.-10D.10

分析 由題意和任意角的三角函數(shù)的定義求出即可.

解答 解:角α的終邊經過點P(6,-8),點P到原點的距離為r=$\sqrt{{6}^{2}+(-8)^{2}}$=10,
故選:D.

點評 本題考查任意角的三角函數(shù)的定義,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

5.已知拋物線C:y2=2px(x>0)的焦點為F,P為C上一點,若|PF|=4,點P到y(tǒng)軸的距離等于3,則點F的坐標為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知O,N,P在△ABC所在平面內,且|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|,$\overrightarrow{NA}$+$\overrightarrow{NB}$+$\overrightarrow{NC}$=$\overrightarrow{0}$,$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\overrightarrow{PB}$•$\overrightarrow{PC}$=$\overrightarrow{PC}$•$\overrightarrow{PA}$,則點O,N,P依次是△ABC的( 。
A.重心,外心,垂心B.重心,外心,內心C.外心,重心,垂心D.外心,重心,內心

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)=2|x|+cosx-π,則不等式(x-2)f(x)>0的解集是:(2,+∞)∪(-$\frac{π}{2}$,$\frac{π}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知集合A={(x,y)|$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{2}$=1},集合B={(x,y)|(m+1)x+(2m-1)y-3m=0,m∈R}.
(1)求證:無論m取何值時,集合B中必有一個確定的元素;
(2)求集合A∩B的子集個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)g(x)=$\frac{a}{x+2}$在[1,2]上為減函數(shù),則a的取值范圍為(  )
A.(-∞,0)B.[0,+∞)C.(0,+∞)D.(-∞,0]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知α是第三象限的角,cos2α=-$\frac{4}{5}$,則tan(2α-$\frac{π}{4}$)=-$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知向量$\overrightarrow a=(sinx,cosx)$,向量$\overrightarrow b=(\sqrt{3},-1)$,函數(shù)f(x)=$\overrightarrow a•\overrightarrow b$.
(1)求函數(shù)f(x)的單調遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象上所有點向右平行移動$\frac{π}{6}$個單位長度,得函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在區(qū)間[0,π]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.①終邊相同的角的同名三角函數(shù)的值相等;
②終邊不同的角的同名三角函數(shù)的值不等;
③若sin α>0,則α是第一、二象限的角;
④若α是第二象限的角,且P(x,y)是其終邊上一點,則cos α=-$\frac{x}{\sqrt{{x}^{2}+{y}^{2}}}$,
其中正確的個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案