分析 (1)通過(guò)過(guò)點(diǎn)O作OG⊥BC于G,利用OG=1、$OF=\frac{OG}{sinθ}=\frac{1}{sinθ}$、$EF=1+\frac{1}{sinθ}$、弧AE=θ及時(shí)間、路程與速度之間的關(guān)系即得結(jié)論;
(2)通過(guò)(1)求導(dǎo),利用函數(shù)的單調(diào)性即得結(jié)論.
解答 解:(1)過(guò)O作OG⊥BC于G,則OG=1,$OF=\frac{OG}{sinθ}=\frac{1}{sinθ}$,$EF=1+\frac{1}{sinθ}$,
弧AE=θ,
所以$T(θ)=\frac{弧AE}{5v}+\frac{EF}{6v}=\frac{θ}{5v}+\frac{1}{6vsinθ}+\frac{1}{6v}$,$θ∈[\frac{π}{4},\frac{3π}{4}]$.…(7分)
(2)$T(θ)=\frac{θ}{5v}+\frac{1}{6vsinθ}+\frac{1}{6v}$,$T'(θ)=\frac{1}{5v}-\frac{cosθ}{{6v{{sin}^2}θ}}=\frac{{6{{sin}^2}θ-5cosθ}}{{30v{{sin}^2}θ}}=-\frac{(2cosθ+3)(3cosθ-2)}{{30v{{sin}^2}θ}}$,…(10分)
記$cos{θ_0}=\frac{2}{3}$,${θ_0}∈[\frac{π}{4},\frac{3π}{4}]$,
θ | $(\frac{π}{4},{θ_0})$ | θ0 | $({θ_0},\frac{3π}{4})$ |
T'(θ) | - | 0 | + |
T(θ) | 減 | 增 |
點(diǎn)評(píng) 本題考查根據(jù)實(shí)際問(wèn)題選擇函數(shù)類型,考查分析問(wèn)題、解決問(wèn)題的能力,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{a}$ | B. | $\frac{a^2}$ | C. | $\frac{a}$ | D. | $\frac{b^2}{a}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $f(x)=\sqrt{x}$ | B. | $f(x)=\frac{x}{2}$ | C. | f(x)=log2x | D. | f(x)=2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com