分析 (1)推導(dǎo)出AD=A′D=$\frac{h}{2}$,AB=A′C′=a,從而B(niǎo)D=C′D=$\sqrt{{a}^{2}+\frac{{h}^{2}}{4}}$,由DE⊥平面BCC′B′,得DE⊥BC′,由此能證明BE=EC′.
(2)點(diǎn)C′到平面BDA′B′的距離h=$\sqrt{{a}^{2}-(\frac{a}{2})^{2}}$=$\frac{\sqrt{3}a}{2}$,${S}_{梯形BD{A}^{'}{B}^{'}}$=$\frac{1}{2}(\frac{1}{2}h+h)a$=$\frac{3}{4}ah$,從而V1=$\frac{1}{3}×{S}_{梯形BD{A}^{‘}{B}^{’}}×h$=$\frac{\sqrt{3}{a}^{2}h}{8}$,再求出正三棱柱A′B′C′-ABC的體積V=${S}_{△ABC}•C{C}^{'}$,從而V2=V-V1,由此能求出結(jié)果.
解答 證明:(1)正三棱柱A′B′C′-ABC中,
∵D為AA′中點(diǎn),E為BC′上的一點(diǎn),AB=a,CC′=h,
∴AD=A′D=$\frac{h}{2}$,AB=A′C′=a,
∴BD=C′D=$\sqrt{{a}^{2}+\frac{{h}^{2}}{4}}$,
∵DE⊥平面BCC′B′,BC′?平面BCC′B′,
∴DE⊥BC′,
∴BE=EC′.
解:(2)∵平面BC′D將棱柱A′B′C′-ABC分割為兩個(gè)幾何體,
記上面一個(gè)幾何體的體積為V1,下面一個(gè)幾何體的體積為V2,
點(diǎn)C′到平面BDA′B′的距離h=$\sqrt{{a}^{2}-(\frac{a}{2})^{2}}$=$\frac{\sqrt{3}a}{2}$,
${S}_{梯形BD{A}^{'}{B}^{'}}$=$\frac{1}{2}(\frac{1}{2}h+h)a$=$\frac{3}{4}ah$,
∴V1=$\frac{1}{3}×{S}_{梯形BD{A}^{‘}{B}^{’}}×h$
=$\frac{1}{3}×\frac{3}{4}ah×\frac{\sqrt{3}a}{2}$=$\frac{\sqrt{3}{a}^{2}h}{8}$,
正三棱柱A′B′C′-ABC的體積:
V=${S}_{△ABC}•C{C}^{'}$=$\frac{1}{2}×a×\frac{\sqrt{3}a}{2}h$=$\frac{\sqrt{3}{a}^{2}h}{4}$,
∴V2=V-V1=$\frac{\sqrt{3}{a}^{2}h}{4}$-$\frac{\sqrt{3}{a}^{2}h}{8}$=$\frac{\sqrt{3}{a}^{2}h}{8}$.
點(diǎn)評(píng) 本題考查兩線段相等的證明,考查幾何體的體積的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力、空間想象能力,考查化歸與轉(zhuǎn)化思想、考查函數(shù)與方程思想、數(shù)形結(jié)合思想,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 1 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -40 | B. | -20 | C. | 40 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{2}-1}{2}$ | B. | $\frac{\sqrt{3}-1}{2}$ | C. | $\sqrt{2}$-1 | D. | $\sqrt{3}$-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | 4 | C. | 2 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3-$\sqrt{3}$ | B. | $\sqrt{2}$ | C. | 2 | D. | 3+$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1 | B. | $\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1 | C. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{15}$=1 | D. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com