13.若(x+$\frac{a}{x}$)(2x-$\frac{1}{x}$)5的展開式中各項(xiàng)系數(shù)的和為2,則該展開式中常數(shù)項(xiàng)是( 。
A.-40B.-20C.40D.20

分析 令x=1,(1+a)×(2-1)5=2,解得a=1.再利用(2x-$\frac{1}{x}$)5的通項(xiàng)公式,進(jìn)而得出.

解答 解:令x=1,(1+a)×(2-1)5=2,解得a=1.
∴(2x-$\frac{1}{x}$)5的通項(xiàng)公式Tr+1=${∁}_{5}^{r}(2x)^{5-r}(-\frac{1}{x})^{r}$=(-1)r25-r${∁}_{5}^{r}$x5-2r,
令5-2r=-1,5-2r=1.
解得r=3或2.
∴該展開式中常數(shù)項(xiàng)=(-1)3${2}^{2}{∁}_{5}^{3}$+$(-1)^{2}×{2}^{3}{∁}_{5}^{2}$=40.
故選:C.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理、方程思想,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.以直角坐標(biāo)系xOy的坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t+4\sqrt{2}}\end{array}\right.$(t為參數(shù)),圓C的極坐標(biāo)方程為ρ=2cos(θ+$\frac{π}{4}$).
(1)求圓C的直角坐標(biāo);
(2)試判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且a=3,c=1,$B=\frac{π}{3}$,則b的值為$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.?dāng)?shù)列{an}的各項(xiàng)均為正數(shù),a1=1,對(duì)任意n∈N*,an+12-1=4an(an+1),數(shù)列{bn}滿足b1=$\frac{1}{2}$,bn+1=$\frac{n+1}{2n}{b_n}$.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)記Tn為數(shù)列{bn}的前n項(xiàng)和,Sn為數(shù)列{log2(an+1)}的前n項(xiàng)和.f(n)=$\frac{{2{S_n}(2-{T_n})}}{n+2}$,試問f(n)是否存在最大值?若存在,求出最大值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知向量$\overrightarrow a=(2,-1,1)$,$\overrightarrow b=(λ,1,-1)$,若$\overrightarrow a$與$\overrightarrow b$的夾角為鈍角,則λ的取值范圍是{λ|λ<1且λ≠-2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.復(fù)數(shù)z=($\frac{1+i}{-1+i}$)2016+i3(i為虛數(shù)單位)的共軛復(fù)數(shù)為(  )
A.1+2iB.1+iC.1-iD.1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)$f(x)=sin(ωx+ϕ)+cos(ωx+ϕ)(ω>0,|ϕ|<\frac{π}{2})$的最小正周期為π,且$f(x+\frac{π}{6})$是偶函數(shù),則( 。
A.f(x)在$(-\frac{π}{4},\frac{π}{6})$單調(diào)遞增B.f(x)在$(\frac{π}{4},\frac{3}{4}π)$單調(diào)遞增
C.f(x)在$(-\frac{π}{4},\frac{π}{6})$單調(diào)遞減D.f(x)在$(\frac{π}{4},\frac{3}{4}π)$單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,正三棱柱A′B′C′-ABC中,D為AA′中點(diǎn),E為BC′上的一點(diǎn),AB=a,CC′=h
(1)若DE⊥平面BCC′B′,求證:BE=EC′
(2)平面BC′D將棱柱A′B′C′-ABC分割為兩個(gè)幾何體,記上面一個(gè)幾何體的體積為V1,下面一個(gè)幾何體的體積為V2,求V1,V2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知隨機(jī)變量X~N(10,22),定義函數(shù)Φ(k)=P(X≤k),則Φ(12)-Φ(6)=0.8185.

查看答案和解析>>

同步練習(xí)冊(cè)答案