13、如圖,設(shè)不全等的△ABC與△A1B1C1不在同一平面內(nèi),且AB∥A1B1,BC∥B1C1,CA∥C1A1
求證:AA1、BB1、CC1三線(xiàn)共點(diǎn).
分析:要證明三線(xiàn)共點(diǎn),可以先設(shè)定其中兩條的交點(diǎn),然后再證明這個(gè)交點(diǎn)在第三條線(xiàn)上,觀察圖形可以發(fā)現(xiàn)CC1即為面BCC1B1與面ACC1A1的交線(xiàn),而直線(xiàn)AA1、BB1又分別在面ACC1A1、面BCC1B1內(nèi),所以直線(xiàn)AA1、BB1的交點(diǎn)就應(yīng)該在交線(xiàn)CC1上,即三線(xiàn)共點(diǎn).
解答:證明:不妨設(shè)AB≠A1B1,AA1∩BB1=S,
∵BC∥B1C1,
∴BB1?面BCC1B1,S∈面BCC1B1
同理,S∈面ACC1A1
∴S∈CC1,
即AA1、BB1、CC1三線(xiàn)共點(diǎn)于S.
點(diǎn)評(píng):此題主要考查的知識(shí)點(diǎn)是公理2的應(yīng)用,是常見(jiàn)題型,經(jīng)典題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一塊邊長(zhǎng)為10的正方形紙片,按如圖所示將陰影部分裁下,然后將余下的四個(gè)全等的等腰三角形作為側(cè)面制作一個(gè)正四棱錐S-ABCD(底面是正方形,頂點(diǎn)在底面的射影是底面中心的四棱錐).
(1)過(guò)此棱錐的高以及一底邊中點(diǎn)F作棱錐的截面(如圖),設(shè)截面三角形面積為y,求y的最大值及y取最大值時(shí)的x的值;
(2)空間一動(dòng)點(diǎn)P滿(mǎn)足
SP
=a
SA
+b
SB
+c
SC
(a+b+c=1),在第(1)問(wèn)的條件下,求|
SP
|
的最小值,并求取得最小值時(shí)a,b,c的值;
(3)在第(1)問(wèn)的條件下,設(shè)F是CD的中點(diǎn),問(wèn)是否存在這樣的動(dòng)點(diǎn)Q,它在此棱錐的表面(包含底面ABCD)運(yùn)動(dòng),且FQ⊥AC?如果存在,計(jì)算其運(yùn)動(dòng)軌跡的長(zhǎng)度,如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖:設(shè)一正方形ABCD邊長(zhǎng)為2分米,切去陰影部分所示的四個(gè)全等的等腰三角形,剩余為一個(gè)正方形和四個(gè)全等的等腰三角形,沿虛線(xiàn)折起,使A、B、C、D四點(diǎn)重合,記為A點(diǎn).恰好能做成一個(gè)正四棱錐(粘貼損耗不計(jì)),圖中AH⊥PQ,O為正四棱錐底面中心.
(Ⅰ)若正四棱錐的棱長(zhǎng)都相等,求這個(gè)正四棱錐的體積V;
(Ⅱ)設(shè)等腰三角形APQ的底角為x,試把正四棱錐的側(cè)面積S表示為x的函數(shù),并求S的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖:設(shè)一正方形ABCD邊長(zhǎng)為2分米,切去陰影部分所示的四個(gè)全等的等腰三角形,剩余為一個(gè)正方形和四個(gè)全等的等腰三角形,沿虛線(xiàn)折起,使A、B、C、D四點(diǎn)重合,記為A點(diǎn).恰好能做成一個(gè)正四棱錐(粘貼損耗不計(jì)),圖中AH⊥PQ,O為正四棱錐底面中心.
(Ⅰ)若正四棱錐的棱長(zhǎng)都相等,求這個(gè)正四棱錐的體積V;
(Ⅱ)設(shè)等腰三角形APQ的底角為x,試把正四棱錐的側(cè)面積S表示為x的函數(shù),并求S的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省成都市樹(shù)德中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

一塊邊長(zhǎng)為10的正方形紙片,按如圖所示將陰影部分裁下,然后將余下的四個(gè)全等的等腰三角形作為側(cè)面制作一個(gè)正四棱錐S-ABCD(底面是正方形,頂點(diǎn)在底面的射影是底面中心的四棱錐).
(1)過(guò)此棱錐的高以及一底邊中點(diǎn)F作棱錐的截面(如圖),設(shè)截面三角形面積為y,求y的最大值及y取最大值時(shí)的x的值;
(2)空間一動(dòng)點(diǎn)P滿(mǎn)足(a+b+c=1),在第(1)問(wèn)的條件下,求的最小值,并求取得最小值時(shí)a,b,c的值;
(3)在第(1)問(wèn)的條件下,設(shè)F是CD的中點(diǎn),問(wèn)是否存在這樣的動(dòng)點(diǎn)Q,它在此棱錐的表面(包含底面ABCD)運(yùn)動(dòng),且FQ⊥AC?如果存在,計(jì)算其運(yùn)動(dòng)軌跡的長(zhǎng)度,如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省成都市樹(shù)德中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

一塊邊長(zhǎng)為10的正方形紙片,按如圖所示將陰影部分裁下,然后將余下的四個(gè)全等的等腰三角形作為側(cè)面制作一個(gè)正四棱錐S-ABCD(底面是正方形,頂點(diǎn)在底面的射影是底面中心的四棱錐).
(1)過(guò)此棱錐的高以及一底邊中點(diǎn)F作棱錐的截面(如圖),設(shè)截面三角形面積為y,求y的最大值及y取最大值時(shí)的x的值;
(2)空間一動(dòng)點(diǎn)P滿(mǎn)足(a+b+c=1),在第(1)問(wèn)的條件下,求的最小值,并求取得最小值時(shí)a,b,c的值;
(3)在第(1)問(wèn)的條件下,設(shè)F是CD的中點(diǎn),問(wèn)是否存在這樣的動(dòng)點(diǎn)Q,它在此棱錐的表面(包含底面ABCD)運(yùn)動(dòng),且FQ⊥AC?如果存在,計(jì)算其運(yùn)動(dòng)軌跡的長(zhǎng)度,如果不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案