6.某幾何體的三視圖如圖所示,則該幾何體的體積是$2π+\frac{4}{3}$.

分析 根據(jù)三視圖可知該幾何體是由四分之一的圓柱和一個(gè)三棱錐組合而成.根據(jù)投影關(guān)系求解該幾何體的體積即可.

解答 解:根據(jù)三視圖可知圓柱的底面半徑r=2,高為2,其體積V=$\frac{1}{4}$Sh=$\frac{1}{4}×π×{r}^{2}=2π$
由三視圖可知三棱錐的底面是邊長(zhǎng)為2的等腰直角三角形,高為2,其體積V=$\frac{1}{3}$Sh=$\frac{1}{3}×2×2×\frac{1}{2}×2=\frac{4}{3}$
故得該幾何體的體積為:$2π+\frac{4}{3}$.
故答案為:$2π+\frac{4}{3}$.

點(diǎn)評(píng) 本題考查了三視圖的投影和對(duì)三視圖的認(rèn)識(shí)與理解.能正確通過三視圖判斷該幾何體的組成及形狀是解題的關(guān)系.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知,焦點(diǎn)在x軸上的橢圓的上下頂點(diǎn)分別為B2、B1,經(jīng)過點(diǎn)B2的直線l與以橢圓的中心為頂點(diǎn)、以B2為焦點(diǎn)的拋物線交于A、B兩點(diǎn),直線l與橢圓交于B2、C兩點(diǎn),且|$\overrightarrow{A{B_2}}$|=2|$\overrightarrow{B{B_2}}$|.直線l1過點(diǎn)B1且垂直于y軸,線段AB的中點(diǎn)M到直線l1的距離為$\frac{9}{4}$.設(shè)$\overrightarrow{CB}$=λ$\overrightarrow{B{B_2}}$,則實(shí)數(shù)λ的取值范圍是( 。
A.(0,3)B.(-$\frac{1}{2}$,2)C.(-$\frac{2}{3}$,4)D.(-$\frac{5}{9}$,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.有一個(gè)公用電話亭,里面有一部電話,在觀察使用這部電話的人的流量時(shí),設(shè)在某一時(shí)刻,有n個(gè)人正在使用電話或等待使用的概率為P(n),且P(n)與時(shí)刻t無關(guān),統(tǒng)計(jì)得到P(n)=$\left\{\begin{array}{l}{(\frac{1}{2})^{n}•P(0),1≤n≤6}\\{0,n≥7}\end{array}\right.$,那么在某一時(shí)刻,這個(gè)公用電話亭里一個(gè)人也沒有的概率P(0)的值是$\frac{64}{127}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,若a=$\sqrt{3}$,b=$\sqrt{2}$,b=45°,則∠A的為(  )
A.30°或120°B.60°或120°C.30°D.60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知不等式ax2+ax+(a-1)≤0.
(1)當(dāng)a=$\frac{1}{3}$,求不等式的解集;
(2)不等式的解集是不為空集,則a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{2}$ax2-(a+1)x+lnx,其中a>0.
(I)討論函數(shù)f(x)的單調(diào)性;
(II)若a>1,證明:對(duì)任意x1,x2∈(1,+∞)(x1≠x2),總有$\frac{{|f({x_1})-f({x_2})|}}{{|a{x_1}^2-a{x_2}^2|}}$<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知冪函數(shù)f(x)=xn的圖象過點(diǎn)(8,$\frac{1}{4}$),且f(a+1)<f(2),則a的范圍是( 。
A.-3<a<1B.a<-3或a>1C.a<1D.a>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖所示的數(shù)陣中,用A(m,n)表示第m行的第n個(gè)數(shù),依此規(guī)律,則A(15,2)=$\frac{17}{24}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x|y=$\sqrt{2x-{x^2}}}\right.}\right\}$,B={y|y=3x,x>0},則A∩B=( 。
A.{x|0<x<2}B.{x|1<x≤2}C.{x|1<x<2}D.{x|0<x≤2}

查看答案和解析>>

同步練習(xí)冊(cè)答案