【題目】已知函數(shù)f(x)|3x2|.

(1)解不等式f(x)<4|x1|

(2)已知mn1(m,n>0),若|xa|f(x)≤(a>0)恒成立,求實數(shù)a的取值范圍.

【答案】(1);(2).

【解析】

1)利用零點分段法分類討論解絕對值不等式即可.

2)利用基本不等式求出的最小值,令g(x)|xa|f(x)|xa||3x2|,只需g(x)max即可求解.

(1)不等式f(x)<4|x1|,即|3x2||x1|<4.

當(dāng)x<時,即-3x2x1<4,

解得-<x<

當(dāng)-x≤1時,即3x2x1<4

解得-x<;

當(dāng)x>1時,即3x2x1<4,無解.

綜上所述,不等式的解集為.

(2) (mn)11,

當(dāng)且僅當(dāng)時取等號,

g(x)|xa|f(x)|xa||3x2|,

所以當(dāng)x=-時,g(x)maxa,要使不等式恒成立,

只需g(x)maxa≤4,即0<a

.故實數(shù)a的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左、右焦點分別為,上頂點為,過點垂直的直線交軸負(fù)半軸于點,且,過,三點的圓恰好與直線相切.

求橢圓的方程;

過右焦點作斜率為的直線與橢圓交于兩點,問在軸上是否存在點,使得以為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人作游戲,甲先在紙上任意寫下一個由L、R構(gòu)成的長為的序列,然后乙將個質(zhì)量互不相同的砝碼逐一放在天平上,每放一個砝碼(已放的砝碼不再拿下),乙都在紙上按順序?qū)懸粋字母:如果天平傾向左邊則寫L,否則寫R.當(dāng)所有砝碼都放在天平上時,乙也寫下一個由L、R構(gòu)成的長為的序列.規(guī)定:當(dāng)乙寫的序列與甲寫的序列相同時乙勝,否則甲勝.試問:誰有必勝策略?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, , .

(1)證明:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某綜藝節(jié)目為比較甲、乙兩名選手的各項能力(指標(biāo)值滿分為5分,分值高者為優(yōu)),分別繪制了如圖所示的六維能力雷達(dá)圖,圖中點A表示甲的創(chuàng)造力指標(biāo)值為4,點B表示乙的空間能力指標(biāo)值為3,則下列敘述錯誤的是(

A.甲的六大能力中推理能力最差B.甲的創(chuàng)造力優(yōu)于觀察能力

C.乙的計算能力優(yōu)于甲的計算能力D.乙的六大能力整體水平低于甲

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為矩形,沿AB將△ADC翻折成.設(shè)二面角的平面角為,直線與直線BC所成角為,直線與平面ABC所成角為,當(dāng)為銳角時,有

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若方程有兩個實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖放置的邊長為1的正方形沿軸滾動,恰好經(jīng)過原點.設(shè)頂點的軌跡方程是,則對函數(shù)有下列判斷①函數(shù)是偶函數(shù);②對任意的,都有;③函數(shù)在區(qū)間上單調(diào)遞減;④函數(shù)的值域是;⑤.其中判斷正確的序號是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司印制了一批文化衫,每件文化衫可有紅、黃、藍(lán)三種不同的顏色和四種不同的圖案.現(xiàn)將這批文化衫分發(fā)給名新員工,每名員工恰好分到圖案不同的4.試求的最小值,使得總存在兩個人,他們所分到的某兩種圖案的4件文化衫的顏色全部相同.

查看答案和解析>>

同步練習(xí)冊答案