【題目】如圖是某校舉行歌唱比賽時(shí),七位評(píng)委為某位選手打出的分?jǐn)?shù)的莖葉統(tǒng)計(jì)圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的中位數(shù)和平均數(shù)依次為( )
A.87,86
B.83,85
C.88,85
D.82,86
【答案】A
【解析】解:由莖葉圖知,去掉一個(gè)最高分93和一個(gè)最低分78后,
所剩數(shù)據(jù)82,83,87,88,90的中位數(shù)是87,
平均數(shù)是 ×(82+83+87+88+90)=86.
故選:A.
【考點(diǎn)精析】利用莖葉圖對(duì)題目進(jìn)行判斷即可得到答案,需要熟知莖葉圖又稱(chēng)“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進(jìn)行比較,將數(shù)的大小基本不變或變化不大的位作為一個(gè)主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個(gè)主干后面的幾個(gè)數(shù),每個(gè)數(shù)具體是多少.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,A、B、C的對(duì)邊分別為a、b、c,己知c﹣b=2bcosA.
(1)若a=2 ,b=3,求c;
(2)若C= ,求角B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形和等邊三角形中, ,平面平面.
(1)在上找一點(diǎn),使,并說(shuō)明理由;
(2)在(1)的條件下,求平面與平面所成銳二面角余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1中,E、F分別為棱AA1、BB1的中點(diǎn),G為棱A1B1上的一點(diǎn),且A1G=λ(0≤λ≤1),則點(diǎn)G到平面D1EF的距離為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在邊長(zhǎng)為1的等邊三角形ABC中,D,E分別是AB,AC上的點(diǎn),AD=AE,F(xiàn)是BC的中點(diǎn),AF與DE交于點(diǎn)G,△ABF沿AF折起,得到如圖2所示的三棱錐A﹣BCF,其中BC= .
(1)求證:平面DEG∥平面BCF;
(2)若D,E為AB,AC上的中點(diǎn),H為BC中點(diǎn),求異面直線(xiàn)AB與FH所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C: (a>b>0)的離心率為,橢圓C截直線(xiàn)y=1所得線(xiàn)段的長(zhǎng)度為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)動(dòng)直線(xiàn)l:y=kx+m(m≠0)交橢圓C于A,B兩點(diǎn),交y軸于點(diǎn)M.點(diǎn)N是M關(guān)于O的對(duì)稱(chēng)點(diǎn),⊙N的半徑為|NO|. 設(shè)D為AB的中點(diǎn),DE,DF與⊙N分別相切于點(diǎn)E,F,求EDF的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點(diǎn)M在線(xiàn)段PPD//平面MAC,PA=PD=,AB=4.
(I)求證:M為PB的中點(diǎn);
(II)求二面角B-PD-A的大;
(III)求直線(xiàn)MC與平面BDP所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某種信息傳輸過(guò)程中,用4個(gè)數(shù)字的一個(gè)排列(數(shù)字允許重復(fù))表示一個(gè)信息,不同排列表示不同信息.若所用數(shù)字只有0和1,則與信息0110至多有兩個(gè)對(duì)應(yīng)位置上的數(shù)字相同的信息個(gè)數(shù)為 ( )
A.10
B.11
C.12
D.15
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)f(x)滿(mǎn)足對(duì)任意x,y∈R恒有f(xy)=f(x)+f(y),且f(x)不恒為0,
(1)求f(1)和f(﹣1)的值;
(2)試判斷f(x)的奇偶性,并加以證明;
(3)若x≥0時(shí)f(x)為增函數(shù),求滿(mǎn)足不等式f(x+1)﹣f(2﹣x)≤0的x取值集合.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com