在△ABC中,∠A,∠B,∠C成等差數(shù)列的充要條件是∠B=60°.判斷此結(jié)論是否正確,并說(shuō)明理由.
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡(jiǎn)易邏輯
分析:在△ABC中,“∠B=60°”是∠A,∠B,∠C三個(gè)角成等差數(shù)列的充要條件,由內(nèi)角和及等差數(shù)列的性質(zhì)判斷.
解答: 解:結(jié)論成立.
因?yàn)槿切蝺?nèi)角和為180°,即∠A+∠B+∠C=180°,
等差中項(xiàng)概念可知,2∠B=∠A+∠C,可得∠B=60°.
根據(jù)∠B=60°推出∠A、∠B、∠C成等差數(shù)列,
在△ABC中,∠A,∠B,∠C成等差數(shù)列的充要條件是∠B=60°;
點(diǎn)評(píng):本題考查充要條件的判斷與證明,等差數(shù)列的應(yīng)用,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|x2-3x-4>0},B={x|-2≤x≤3},則(∁RA)∩B=( 。
A、R
B、[-2,-1]
C、[-1,3]
D、[-2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F是雙曲線的右焦點(diǎn)
x2
a2
-
y2
b2
=1的右焦點(diǎn),點(diǎn)A,B分別在其兩條漸進(jìn)線上,且滿足
BF
=2
FA
OA
AB
=0(O為坐標(biāo)原點(diǎn)),則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的方程2x2-(m+1)x+m=0的兩個(gè)實(shí)數(shù)根都在(3,4)內(nèi),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正四面體ABCD的棱長(zhǎng)為a,其四個(gè)面的中心分別為E,F(xiàn),G,H,設(shè)四面體EFGH的棱長(zhǎng)為b,則a:b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

鐘表經(jīng)過(guò)4小時(shí),時(shí)針與分針各轉(zhuǎn)了
 
度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:x2=2py(p>0)的焦點(diǎn)為F,點(diǎn)A(a,4)為拋物線C上的定點(diǎn),點(diǎn)P為拋物線C上的動(dòng)點(diǎn).且△FOA的外接圓圓心到準(zhǔn)線的距離為
3
2

(1)求拋物線C的方程;
(2)過(guò)P作圓x2+(y-1)2=
1
4
的兩條切線分別交該圓于點(diǎn)M,N,求四邊形PMFN面積的最小值及此時(shí)P點(diǎn)坐標(biāo).
(3)設(shè)點(diǎn)T(0,t),且對(duì)拋物線C上的任意動(dòng)點(diǎn)P,∠TPF總為銳角,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=-x2+ax-
a
4
+
1
2
,x∈[-1,1]的最大值為2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
2
sinωx+
3
2
cosωx(ω>0)的周期為4.
(Ⅰ)求f(x)的解析式;
(Ⅱ)將f(x)的圖象沿x軸向右平移
2
3
個(gè)單位得到函數(shù)g(x)的圖象,
P、Q分別為函數(shù)g(x)圖象的最高點(diǎn)和最低點(diǎn)(如圖),求∠OQP的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案