在正四棱柱ABCD-A1B1C1D1中,E為AD中點(diǎn),F(xiàn)為B1C1中點(diǎn).
(Ⅰ)求證:A1F∥平面ECC1
(Ⅱ)在CD上是否存在一點(diǎn)G,使BG⊥平面ECC1?若存在,請(qǐng)確定點(diǎn)G的位置,并證明你的結(jié)論;若不存在,請(qǐng)說明理由.

解:(Ⅰ)在正四棱柱ABCD-A1B1C1D1中,取BC中點(diǎn)M,連接AM,F(xiàn)M.
∵平行四邊形BB1C1C中,F(xiàn)、M分別是B1C1、BC的中點(diǎn),
∴FM∥B1B且FM=B1B.…(2分)
∵正四棱柱ABCD-A1B1C1D1中,AA1∥B1B且AA1=B1B
∴FM∥A1A且FM=A1A,得四邊形AA1FM是平行四邊形.
∴FA1∥AM.
∵平行四邊形ABCD中,E為AD中點(diǎn),M為BC中點(diǎn),
∴AE∥MC且AE=MC.得四邊形AMCE是平行四邊形.…(4分)
∴CE∥AM,可得CE∥A1F.
∵A1F?平面ECC1,EC?平面ECC1,
∴A1F∥平面ECC1.…(6分)
(Ⅱ)結(jié)論:在CD上存在一點(diǎn)G,使BG⊥平面ECC1
取CD中點(diǎn)G,連接BG…(7分)
在正方形ABCD中,DE=GC,CD=BC,∠ADC=∠BCD,
∴△CDE≌△BCG,得∠ECD=∠GBC.…(9分)
∵∠CGB+∠GBC=90°,所以∠CGB+∠DCE=90°,得BG⊥EC.…(11分)
∵CC1⊥平面ABCD,BG?平面ABCD,∴CC1⊥BG,
又∵EC∩CC1=C.EC、CC1⊆平面ECC1
∴BG⊥平面ECC1
故在CD上存在中點(diǎn)G,使得BG⊥平面ECC1.…(13分)
分析:(I)利用平行四邊形和四棱柱的性質(zhì),證出FM∥A1A且FM=A1A,得四邊形AA1FM是平行四邊形,從而FA1∥AM.再根據(jù)平行四邊形ABCD中,E、M分別為AD、BC中點(diǎn),得四邊形AMCE是平行四邊形,所以CE∥AM.由此可得CE∥A1F,結(jié)合線面平行判定定理,得到A1F∥平面ECC1
(II)取CD中點(diǎn)G,連接BG,利用正方形的性質(zhì)結(jié)合三角形全等,可得BG⊥EC.由CC1⊥平面ABCD,得CC1⊥BG,結(jié)合線面垂直判定定理,得BG⊥平面ECC1.說明在CD上存在中點(diǎn)G,使得BG⊥平面ECC1
點(diǎn)評(píng):本題給出正四棱柱,求證線面平行并探索線面垂直,著重考查了空間線面垂直、平行的判定與性質(zhì)等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在正四棱柱ABCD-A1B1C1D1中,棱長(zhǎng)AA1=2,AB=1,E是AA1的中點(diǎn).
(Ⅰ)求證:A1C∥平面BDE;
(Ⅱ)求點(diǎn)A到平面BDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在正四棱柱ABCD-A1B1C1D1中,AA1=2AB,E為CC1的中點(diǎn).
求證:(1)AC1∥平面BDE;(2)A1E⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正四棱柱ABCD-A1B1C1D1中,AB=1,AA1=2,M、N分別為B1B和A1D的中點(diǎn).
(Ⅰ)求直線MN與平面ADD1A1所成角的大。
(Ⅱ)求二面角A-MN-A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•長(zhǎng)寧區(qū)一模)在正四棱柱ABCD-A1B1C1D1中,已知底面ABCD的邊長(zhǎng)為2,點(diǎn)P是CC1的中點(diǎn),直線AP與平面BCC1B1成30°角,求異面直線BC1和AP所成角的大。ńY(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•昌平區(qū)二模)在正四棱柱ABCD-A1B1C1D1中,E為AD中點(diǎn),F(xiàn)為B1C1中點(diǎn).
(Ⅰ)求證:A1F∥平面ECC1;
(Ⅱ)在CD上是否存在一點(diǎn)G,使BG⊥平面ECC1?若存在,請(qǐng)確定點(diǎn)G的位置,并證明你的結(jié)論;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案