分析 (1)根據(jù)對稱性求得ω的值,從而得到函數(shù)的解析式,由此求得它的周期.
(2)令$\frac{π}{2}$+2kπ≤2x+$\frac{π}{6}$≤$\frac{3π}{2}$+2kπ,求得x的范圍,即可得到函數(shù)的單調(diào)減區(qū)間.
(3)求出g(x)的解析式,再求g(x)在區(qū)間$[{0\;,\;\;\frac{π}{2}}]$的值域.
解答 解:(1)由題可知:2$ω•\frac{π}{6}$+$\frac{π}{6}$=kπ+$\frac{π}{2}$,故有ω=3k+1.
又∵0<ω<1,∴ω=1.…(3分)
∴f(x)=1+2sin(2x+$\frac{π}{6}$),由此可得函數(shù)的周期為T=π.…(5分)
(2)令$\frac{π}{2}$+2kπ≤2x+$\frac{π}{6}$≤$\frac{3π}{2}$+2kπ,可得$\frac{π}{6}$+kπ≤x≤$\frac{2π}{3}$+kπ,k∈Z,…(7分)
∵$x∈[{-\frac{π}{2}\;,\;\;\frac{π}{2}}]$
故函數(shù)f(x)在$x∈[{-\frac{π}{2}\;,\;\;\frac{π}{2}}]$的單調(diào)減區(qū)間為[$\frac{π}{6}$,$\frac{π}{2}$].…(10分)
(3)g(x)上取點(x,y),關于$({\frac{π}{4}\;,\;\;0})$對稱的點的坐標為($\frac{π}{2}$-x,-y),
代入f(x)=1+2sin(2x+$\frac{π}{6}$),可得g(x)=-1-2sin(2x+$\frac{π}{6}$),
x∈$[{0\;,\;\;\frac{π}{2}}]$,2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],
∴sin(2x+$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],
∴g(x)在區(qū)間$[{0\;,\;\;\frac{π}{2}}]$的值域為[-3,0].
點評 本題主要考查函數(shù)y=Asin(ωx+∅)的對稱性、周期性及求法,求函數(shù)y=Asin(ωx+∅)單調(diào)區(qū)間,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=±$\sqrt{2}$x | B. | y=±$\frac{\sqrt{2}}{2}$x | C. | y=±2x | D. | y=±$\frac{1}{2}$x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-2<x<1} | B. | {x|-2≤x<1} | C. | {x|-2≤x≤1} | D. | {x|-2<x≤1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{3}$ | B. | $\frac{1}{2}$ | C. | $-\frac{5}{2}$ | D. | $-\frac{11}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{3}$ | B. | $\frac{10}{3}$ | C. | $\frac{20}{3}$ | D. | $\frac{25}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com