7.已知向量|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,<$\overrightarrow{a}$,$\overrightarrow$>=60°,則|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{3}$.

分析 先計(jì)算$\overrightarrow{a}•\overrightarrow$,在計(jì)算($\overrightarrow{a}-\overrightarrow$)2,開方即為|$\overrightarrow{a}$-$\overrightarrow$|.

解答 解:$\overrightarrow{a}•\overrightarrow$=2×1×cos60°=1,
∴($\overrightarrow{a}-\overrightarrow$)2=${\overrightarrow{a}}^{2}-2\overrightarrow{a}•\overrightarrow+{\overrightarrow}^{2}$=4-2+1=3,
∴|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點(diǎn)評 本題考查了平面向量的數(shù)量積運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在某次數(shù)學(xué)測驗(yàn)中,5位學(xué)生的成績?nèi)缦拢?8、85、a、82、69,他們的平均成績?yōu)?0,則他們成績的方差等于38.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知f(x)=$\frac{1}{4}$sin(πx-$\frac{π}{4}$)cos(πx-$\frac{π}{4}$)+$\frac{\sqrt{3}}{4}$cos2(πx-$\frac{π}{4}$)-$\frac{\sqrt{3}}{8}$.
(Ⅰ)求y=f(x)的單調(diào)減區(qū)間及對稱軸方程;
(Ⅱ)若函數(shù)y=f(x)-m在區(qū)間[0,$\frac{1}{2}$]上恰好有兩個零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)(x∈R),滿足f(-x)=-f(x),f(3-x)=f(x),則f(435)=(  )
A.0B.3C.-3D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.方程x2-y2=-1表示( 。
A.焦點(diǎn)在x軸的雙曲線B.
C.兩條直線D.焦點(diǎn)在y軸的雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.1+a1+a2+…+an的值是( 。
A.$\frac{1-{a}^{n}}{1-a}$B.$\frac{1-{a}^{n+1}}{1-a}$C.1+n或$\frac{1-{a}^{n}}{1-a}$D.1+n或$\frac{1-{a}^{n+1}}{1-a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖所示,四棱錐P-ABCD中,底面ABCD為平行四邊形,AB=2AD=2,BD=$\sqrt{3}$,PD⊥平面ABCD.
(Ⅰ)證明:平面PBC⊥平面PBD;
(Ⅱ)在△PBD中,∠PBD=30°,點(diǎn)E在PB上且BE=3PE,求三棱錐P-CDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.銀川唐徠回民中學(xué)高二年級某次周考中(滿分100分),理科A班五名同學(xué)的物理成績?nèi)绫硭荆?br />
學(xué)生A1A2A3A4A5
數(shù)學(xué)x8991939597
物理y8789899293
(1)請?jiān)谌鐖D直角坐標(biāo)系中作出兩組數(shù)據(jù)散點(diǎn)圖,并判斷正負(fù)相關(guān);
(2)依據(jù)散點(diǎn)圖說明物理成績與數(shù)學(xué)成績是否具有線性相關(guān)性,若有,求出線性回歸直線方程;
(3)要從4名數(shù)學(xué)成績高于90分以上的同學(xué)中選出2人參加大學(xué)先修課程的學(xué)習(xí),求所選兩人中至少有一人物理成績高于90分的概率.
以下公式及數(shù)據(jù)供選擇:
b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$
$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=41880;
$\sum_{i=1}^{5}{{x}_{i}}^{2}$=43285.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,四邊形ABCD、ADEF為正方形,G,H是DF,F(xiàn)C的中點(diǎn).
(1)求證:GH∥平面CDE;
(2)求證:BC⊥平面CDE.

查看答案和解析>>

同步練習(xí)冊答案