分析 設(shè)P(x0,4),代入拋物線方程,結(jié)合拋物線的定義,可得p=2$\sqrt{2}$,進而得到拋物線方程與P的坐標.
解答 解:設(shè)P(x0,4),代入由y2=2px(p>0)中得x0=$\frac{8}{p}$,
所以|PQ|=$\frac{8}{p}$,|PF|=$\frac{p}{2}$+$\frac{8}{p}$,
由題設(shè)得$\frac{p}{2}$+$\frac{8}{p}$=$\frac{3}{2}$×$\frac{8}{p}$,p>0,解得p=2$\sqrt{2}$.
所以C的方程為y2=4$\sqrt{2}$x,P(2$\sqrt{2}$,4).
故答案為y2=4$\sqrt{2}$x;(2$\sqrt{2}$,4).
點評 本題主要考查拋物線的應(yīng)用和拋物線定義.對于過拋物線焦點的直線與拋物線關(guān)系,常用拋物線的定義來解決.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{10}{3}π,8π$ | B. | $\frac{16}{3}π,8π$ | C. | $\frac{10}{3}π,10π$ | D. | $\frac{16}{3}π,10π$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 90° | B. | 60° | C. | 45° | D. | 30° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {1,2,3} | B. | {1,2} | C. | {3} | D. | {2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{y^2}{3}-{x^2}=1$ | B. | $\frac{x^2}{4}-\frac{y^2}{12}=1$ | C. | ${y^2}-\frac{x^2}{3}=1$ | D. | $\frac{x^2}{12}-\frac{y^2}{4}=1$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com