15.下列說(shuō)法中,正確的是(1)、(3).
(1)任取x>0,均有3x>2x;
(2)當(dāng)a>0,且a≠1時(shí),有a3>a2;
(3)y=($\sqrt{3}$)-x是減函數(shù);
(4)函數(shù)f(x)在x>0時(shí)是增函數(shù),x<0也是增函數(shù),所以f(x)是增函數(shù);
(5)若函數(shù)f(x)=ax2+bx+2與x軸沒(méi)有交點(diǎn),則b2-8a<0且a>0;
(6)y=x2-2|x|-3的遞增區(qū)間為[1,+∞).

分析 (1)將不等式轉(zhuǎn)換,結(jié)合指數(shù)函數(shù)的性質(zhì)進(jìn)行判斷,
(2)利用特殊值法進(jìn)行判斷,
(3)根據(jù)指數(shù)函數(shù)的單調(diào)性與底數(shù)之間的關(guān)系進(jìn)行判斷,
(4)利用特殊函數(shù)進(jìn)行排除,
(5)當(dāng)a=b=0時(shí),滿(mǎn)足條件,但結(jié)論不成立,
(6)利用分段函數(shù)的表達(dá)式結(jié)合二次函數(shù)的單調(diào)性的性質(zhì)進(jìn)行判斷.

解答 解:(1)當(dāng)x>0,$\frac{{3}^{x}}{{2}^{x}}$=($\frac{3}{2}$)x>1,即恒有3x>2x;故(1)正確,
(2)當(dāng)a=$\frac{1}{2}$時(shí),滿(mǎn)足a>0,且a≠1時(shí),但a3>a2不成立,故(2)錯(cuò)誤,
(3)y=($\sqrt{3}$)-x=($\frac{\sqrt{3}}{3}$)x為減函數(shù),故(3)正確,
(4)函數(shù)f(x)=-$\frac{1}{x}$時(shí),滿(mǎn)足函數(shù)f(x)在x>0時(shí)是增函數(shù),x<0也是增函數(shù),但f(x)不是單調(diào)函數(shù),故(4)錯(cuò)誤;
(5)當(dāng)a=0時(shí),滿(mǎn)足函數(shù)f(x)=ax2+bx+2=2與x軸沒(méi)有交點(diǎn),此時(shí)b2-8a<0且a>0不成立,故(6)錯(cuò)誤;
(6)當(dāng)x<0時(shí),y=x2-2|x|-3=x2+2x-3,此時(shí)函數(shù)的對(duì)稱(chēng)性x=-1,則當(dāng)-1<x<0時(shí),函數(shù)為增函數(shù),
當(dāng)x≥0時(shí),y=x2-2|x|-3=x2-2x-3,此時(shí)函數(shù)的對(duì)稱(chēng)性x=1,則當(dāng)x≥1時(shí),函數(shù)為增函數(shù),
即函數(shù)的遞增區(qū)間為[1,+∞)和[-1,0],故(6)錯(cuò)誤,
故答案為:(1)、(3)

點(diǎn)評(píng) 本題主要考查命題的真假判斷,涉及函數(shù)性質(zhì)的綜合應(yīng)用,考查學(xué)生的運(yùn)算和推理能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知α為銳角,且tan(π-α)+3=0,則sinα的值是$\frac{3\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.由個(gè)別事實(shí)概括出一般結(jié)論的推理,稱(chēng)為歸納推理.以下推理為歸納推理的是( 。
A.三角函數(shù)都是周期函數(shù),sinx是三角函數(shù),所以sinx是周期函數(shù)
B.一切奇數(shù)都不能被2整除,525是奇數(shù),所以525不能被2整除
C.由1=12,1+3=22,1+3+5=32,得1+3+…+(2n-1)=n2(n∈N*
D.兩直線平行,同位角相等.若∠A與∠B是兩條平行直線的同位角,則∠A=∠B

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=3x+λ•3-x(λ∈R).
(1)若f(x)為奇函數(shù),求λ的值和此時(shí)不等式f(x)>1的解集;
(2)若不等式f(x)≤6對(duì)x∈[0,2]恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.從邊長(zhǎng)為10cm×16cm的矩形紙板的四角截去四個(gè)相同的小正方形,作成一個(gè)無(wú)蓋的盒子.盒子的高為多少時(shí),盒子的容積最大?最大容積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.以下四個(gè)關(guān)于圓錐曲線的命題中
①設(shè)A,B為兩個(gè)定點(diǎn),k為非零常數(shù),|$\overrightarrow{PA}$|-|$\overrightarrow{PB}$|=k,則動(dòng)點(diǎn)P的軌跡為雙曲線;
②方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
③設(shè)定圓C上一定點(diǎn)A作圓的動(dòng)點(diǎn)弦AB,O為坐標(biāo)原點(diǎn),若$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OB}$),則動(dòng)點(diǎn)P的軌跡為橢圓;
④過(guò)點(diǎn)(0,1)作直線,使它與拋物線y2=4x僅有一個(gè)公共點(diǎn),這樣的直線有3條;
其中真命題的序號(hào)為②④.(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列說(shuō)法正確的個(gè)數(shù)有( 。
①函數(shù)f(x)=lg(2x-1)的值域?yàn)镽;
②若(${\frac{2}{3}}$)a>(${\frac{2}{3}}$)b,則a<b;
③已知f(x)=$\left\{\begin{array}{l}{x^3}+1\;\;x>0\\ 2017x+1\;\;x≤0\end{array}$,則f[f(0)]=1;
④已知f(1)<f(2)<f(3)<…<f(2016),則f(x)在[1,2016]上是增函數(shù).
A.0個(gè)B.1個(gè)C.2 個(gè)D.3個(gè)Q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知二階矩陣M有特征值λ=8及對(duì)應(yīng)的一個(gè)特征向量$\overrightarrow{e_1}$=$[\begin{array}{l}1\\ 1\end{array}]$,并且矩陣M將點(diǎn)(-1,3)變換為(0,8).
(1)求矩陣M;
(2)求曲線x+3y-2=0在M的作用下的新曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)函數(shù)f(x)=|x+1|+|x-2|,g(x)=|x-3|+|x-2|.
(1)求函數(shù)f(x)的最小值;
(2)若對(duì)任意的x∈R,不等式g(a)≤f(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案