4.已知二階矩陣M有特征值λ=8及對應(yīng)的一個特征向量$\overrightarrow{e_1}$=$[\begin{array}{l}1\\ 1\end{array}]$,并且矩陣M將點(-1,3)變換為(0,8).
(1)求矩陣M;
(2)求曲線x+3y-2=0在M的作用下的新曲線方程.

分析 (1)利用特征值、特征向量的定義,建立方程,即可得出結(jié)論;
(2)求出變換前后坐標(biāo)之間的關(guān)系,即可得出結(jié)論.

解答 解:(1)設(shè)$M=[{\begin{array}{l}a&b\\ c&d\end{array}}]$,由$[{\begin{array}{l}a&b\\ c&d\end{array}}][{\begin{array}{l}1\\ 1\end{array}}]=8[{\begin{array}{l}1\\ 1\end{array}}]$及$[{\begin{array}{l}a&b\\ c&d\end{array}}][{\begin{array}{l}{-1}\\ 3\end{array}}]=[{\begin{array}{l}0\\ 8\end{array}}]$,
得$\left\{\begin{array}{l}a+b=8\\ c+d=8\\-a+3b=0\\-c+3d=8\end{array}\right.$,解得$\left\{\begin{array}{l}a=6\\ b=2\\ c=4\\ d=4\end{array}\right.$,∴$M=[{\begin{array}{l}6&2\\ 4&4\end{array}}]$…(4分)
(2)設(shè)原曲線上任一點P(x,y)在M作用下對應(yīng)點P'(x',y'),
則$[\begin{array}{l}x'\\ y'\end{array}]=[{\begin{array}{l}6&2\\ 4&4\end{array}}][\begin{array}{l}x\\ y\end{array}]$,即$\left\{\begin{array}{l}x'=6x+2y\\ y'=4x+4y\end{array}\right.$,解之得$\left\{\begin{array}{l}x=\frac{2x'-y'}{8}\\ y=\frac{-2x'+3y'}{8}\end{array}\right.$,
代入x+3y-2=0得x'-2y'+4=0,
即曲線x+3y-2=0在M的作用下的新曲線方程為x-2y+4=0…(10分)

點評 本題考查特征值、特征向量的定義,考查矩陣變換,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)向量$\overrightarrow{a}$=(5,-7),$\overrightarrow$=(-6,-4),則$\overrightarrow{a}$•$\overrightarrow$=( 。
A.-58B.-2C.2D.22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.下列說法中,正確的是(1)、(3).
(1)任取x>0,均有3x>2x;
(2)當(dāng)a>0,且a≠1時,有a3>a2;
(3)y=($\sqrt{3}$)-x是減函數(shù);
(4)函數(shù)f(x)在x>0時是增函數(shù),x<0也是增函數(shù),所以f(x)是增函數(shù);
(5)若函數(shù)f(x)=ax2+bx+2與x軸沒有交點,則b2-8a<0且a>0;
(6)y=x2-2|x|-3的遞增區(qū)間為[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{ax-1}{e^x}$.
(Ⅰ)當(dāng)a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a<0時,求函數(shù)f(x)在區(qū)間[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.5個黑球和4個白球從左到右任意排成一排,下列說法正確的是(  )
A.總存在一個黑球,它右側(cè)的白球和黑球一樣多
B.總存在一個白球,它右側(cè)的白球和黑球一樣多
C.總存在一個黑球,它右側(cè)的白球比黑球少一個
D.總存在一個白球,它右側(cè)的白球比黑球少一個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若等比數(shù)列{an}的前n項和Sn=($\frac{1}{2}$)n+a(n∈N*),則數(shù)列{an}的各項和為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中,在(-∞,0)上是減函數(shù)的是( 。
A.y=$\frac{1}{x-1}$B.y=1-x2C.y=x2+xD.y=$\frac{1}{x+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在銳角三角形中,A=2B,則下列敘述正確的是②③.
①sin3B=sin2C  ②tan$\frac{C}{2}$tan$\frac{3B}{2}$=1  ③$\frac{π}{6}$<B<$\frac{π}{4}$  ④$\frac{a}$∈($\sqrt{2}$,$\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知x,y為任意實數(shù),有a=2x+y,b=2x-y,c=y-1
(1)若4x+y=2,求a2+b2+c2的最小值;
(2)求|a|,|b|,|c|三個數(shù)中最大數(shù)的最小值.

查看答案和解析>>

同步練習(xí)冊答案