精英家教網 > 高中數學 > 題目詳情
已知圓O的方程為 x2+y2=100,點A的坐標為(-6,0),M為圓O上任一點,AM的垂直平分線交OM于點P,求點P的方程.
分析:利用平面幾何中的垂直平分線知識,建立線段和PA+PO為定值的關系,確定交點的軌跡方程.
解答:解:由中垂線知,
PA=PM故PA+PO=PM+PO=OM=10,
即P點的軌跡為以A、O為焦點的橢圓,
中心為(-3,0),
故P點的方程為
(x+3)2
25
+
y2
16
=1
點評:定義法:運用解析幾何中一些常用定義(例如圓錐曲線的定義),可從曲線定義出發(fā)直接寫出軌跡方程,或從曲線定義出發(fā)建立關系式,從而求出軌跡方程.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知圓O的方程為x2+y2=1,直線l1過點A(3,0),且與圓O相切.
(1)求直線l1的方程;
(2)設圓O與x軸相交于P,Q兩點,M是圓O上異于P,Q的任意一點,過點A且與x軸垂直的直線為l2,直線PM交直線l2于點P′,直線QM交直線l2于點Q′.求證:以P′Q′為直徑的圓C總經過定點,并求出定點坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓O的方程為x2+y2=2,圓M的方程為(x-1)2+(y-3)2=1,過圓M上任一點P作圓O的切線PA,若直線PA與圓M的另一個交點為Q,則當弦PQ的長度最大時,直線PA的斜率是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓O的方程為:x2+y2=1.
Ⅰ、設過圓O上的一點P(-
3
5
,
4
5
)
作圓O的切線l,求切線l方程;
Ⅱ、設圓A:(x-2)2+y2=3與圓O相交于B,C兩點,求四邊形ABOC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓O的方程為x2+y2=1和點A(a,0),設圓O與x軸交于P、Q兩點,M是圓OO上異于P、Q的任意一點,過點A(a,0)且與x軸垂直的直線為l,直線PM交直線l于點E,直線QM交直線l于點F.
(1)若a=3,直線l1過點A(3,0),且與圓O相切,求直線l1的方程;
(2)證明:若a=3,則以EF為直徑的圓C總過定點,并求出定點坐標;
(3)若以EF為直徑的圓C過定點,探求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓O的方程為x2+y2=4,P是圓O上的一個動點,若線段OP的垂直平分線總是被平面區(qū)域|x|+|y|≥a覆蓋,則實數a的取值范圍是( 。

查看答案和解析>>

同步練習冊答案