在人群流量較大的街道,有一中年人吆喝“送錢”,已知他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質(zhì)地完成相同),旁邊立著一塊小黑板寫道:
摸球方法:從袋中隨機摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者10元錢;若摸得非同一顏色的3個球,摸球者付給攤主2元錢.
(Ⅰ)任意摸球一次,求摸球者獲得10元的概率.
(Ⅱ)假定一天中有200人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?
考點:離散型隨機變量的期望與方差,列舉法計算基本事件數(shù)及事件發(fā)生的概率
專題:概率與統(tǒng)計
分析:(Ⅰ)任意摸球一次,摸球者獲得10元包含兩種情況:摸到的三個球全是黃色球或摸到的三個球全是白色球,由此能求出摸球者獲得10元的概率.
(Ⅱ)先列舉出所有的事件共有20種結(jié)果,根據(jù)摸得同一顏色的3個球,攤主送給摸球者10元錢;若摸得非同一顏色的3個球,摸球者付給攤主2元錢,算一下摸出的球是同一色球的概率,估計出結(jié)果.
解答: 解:(Ⅰ)任意摸球一次,摸球者獲得10元包含兩種情況:
摸到的三個球全是黃色球或摸到的三個球全是白色球,
∴摸球者獲得10元的概率:
P=
C
3
3
+
C
3
3
C
3
6
=
1
10

(Ⅱ)事件A={摸出的3個球為同一顏色}={摸出的3個球為白球或摸出的3個球為黃球},
P(A)=
C
3
3
+
C
3
3
C
3
6
=
1
10
,
假定一天中有200人次摸獎,
由摸出的3個球為同一顏色的概率可估計事件A發(fā)生有20次,不發(fā)生180次.
則一天可賺180×2-20×10=160,每月可賺160×30=4800元.
點評:本題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學期望的求法,是中檔題,解題時要認真審題,在歷年高考中都是必考題型之一.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知定義域為R的偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞減,則滿足f(2x-1)≥f(1)的x取值范圍是( 。
A、[0,1]
B、[1,+∞)
C、(-∞,0]
D、(-∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某袋中有10個乒乓球,其中有7個新、3個舊球,從袋中任取3個來用,用后放回袋中(新球用后變?yōu)榕f球),記此時袋中舊球個數(shù)為X,求X的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,過點F2作雙曲線C的一條漸近線的垂線,垂足為H,交雙曲線于點M且
F2M
=2
MH
,則雙曲線C的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(ωx+
π
6
)+sin(ωx-
π
6
)-2cos2
ωx
2
,x∈R
(其中ω>0)
(I)求函數(shù)f(x)的值域;
(II)若函數(shù)y=f(x)的圖象與直線y=-1的兩個相鄰交點間的距離為
π
2
,求函數(shù)y=f(x)的單調(diào)增區(qū)間.
(Ⅲ)設(shè)g(x)=-4cos2x-sinx+m,若對任意x1∈R,總是存在x2∈[0,
π
2
],使得f(x1)≥g(x2),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

廣州某商場根據(jù)以往某種商品的銷售記錄,繪制了日銷售量的頻率分布表(如表)和頻率分布直方圖(如圖). 
分組頻數(shù)頻率
[0,50]n10.15
(50,100]n20.25
(100,150]n30.30
(150,200]n40.20
(200,250]n50.10
將日銷售量落入各組的頻率視為概率,并假設(shè)每天的銷售量相互獨立.
(1)求a1,a3的值.
(2)求在未來連續(xù)3天里,有連續(xù)2天的日銷售量都高于100個且另1天的日銷售量不高于50個的概率;
(3)用X表示在未來3天里日銷售量高于100個的天數(shù),求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=
2
cosxsin(x+
π
4
).
(Ⅰ)求函數(shù)f(x)的最小正周期及最大值;
(Ⅱ)寫出函數(shù)f(x)在[0,π]上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

退休年齡延遲是平均預期壽命延長和人口老齡化背景下的一種趨勢.某機構(gòu)為了解某城市市民的年齡構(gòu)成,從該城市市民中隨機抽取年齡段在20~80歲(含20歲和80歲)之間的600人進行調(diào)查,并按年齡層次[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]繪制頻率分布直方圖,如圖所示.若規(guī)定年齡分布在[20,40)歲的人為“青年人”,[40,60)為“中年人”,[60,80]為“老年人”.

(Ⅰ)若每一組數(shù)據(jù)的平均值用該區(qū)間中點值來代替,試估算所調(diào)查的600人的平均年齡;
(Ⅱ)將上述人口分布的頻率視為該城市在20-80年齡段的人口分布的概率.從該城市20-80年齡段市民中隨機抽取3人,記抽到“老年人”的人數(shù)為X,求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知a-b=2,c=4,sinA=2sinB.
(Ⅰ)求△ABC的面積;
(Ⅱ)求sin(2A-B).

查看答案和解析>>

同步練習冊答案