廣州某商場根據(jù)以往某種商品的銷售記錄,繪制了日銷售量的頻率分布表(如表)和頻率分布直方圖(如圖). 
分組頻數(shù)頻率
[0,50]n10.15
(50,100]n20.25
(100,150]n30.30
(150,200]n40.20
(200,250]n50.10
將日銷售量落入各組的頻率視為概率,并假設(shè)每天的銷售量相互獨(dú)立.
(1)求a1,a3的值.
(2)求在未來連續(xù)3天里,有連續(xù)2天的日銷售量都高于100個(gè)且另1天的日銷售量不高于50個(gè)的概率;
(3)用X表示在未來3天里日銷售量高于100個(gè)的天數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,頻率分布直方圖,離散型隨機(jī)變量及其分布列
專題:概率與統(tǒng)計(jì)
分析:(1)由頻率分布直方圖,能求出a1,a3的值.
(2)設(shè)A1表示事件“日銷售量高于100個(gè)”,A2表示事件“日銷售量不高于50個(gè)”,B表示事件“在未來連續(xù)3天里有連續(xù)2天日銷售量高于100個(gè)且另1天銷售量不高于50個(gè)”,由此能求出結(jié)果.
(3)X的可能取值為0,1,2,3,且X~B(3,0.6),由此能求出X的分布列和EX.
解答: (本小題滿分12分)
(1)解:由頻率分布直方圖,得:
a1=
0.10
50
=0.002
,a3=
0.20
50
=0.004
.…(2分)
(2)解:設(shè)A1表示事件“日銷售量高于100個(gè)”,A2表示事件“日銷售量不高于50個(gè)”,
B表示事件“在未來連續(xù)3天里有連續(xù)2天日銷售量高于100個(gè)且另1天銷售量不高于50個(gè)”.
P(A1)=0.30+0.20+0.10=0.6,P(A2)=0.15,
故所求概率:P(B)=0.6×0.6×0.15×2=0.108.…(5分)
(3)解:依題意,X的可能取值為0,1,2,3,且X~B(3,0.6).…(6分)
P(X=0)=
C
0
3
•(1-0.6)3=0.064
,
P(X=1)=
C
1
3
×0.6×(1-0.6)2=0.288
,
P(X=2)=
C
2
3
×0.62×(1-0.6)=0.432

P(X=3)=
C
3
3
×0.63=0.216
,…(10分)
∴X的分布列為
X0123
P0.0640.2880.4320.216
…(11分)
∴EX=3×0.6=1.8.…(12分)
點(diǎn)評:本題考查頻率分布直方圖的應(yīng)用,考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,在歷年高考中都是必考題型之一.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x>0},B={x|
x
x-1
<0},則A∩B等于( 。
A、(0,1)
B、(0,+∞)
C、(-∞,1)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1+a2+…+an=
n
2
an+1(n∈N*),數(shù)列{bn}為等比數(shù)列,a1=b1=2,a2=b2
(Ⅰ)求{an}、{bn}的 通項(xiàng)公式.
(Ⅱ)若對每個(gè)正整數(shù)k,在bk和bk+1之間插入ak個(gè)2,得到一個(gè)新數(shù)列{cn}.設(shè)Tn是數(shù)列{cn}的前n項(xiàng)和,試求滿足Tm=2cm+1的所有正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanθ=
1
2
,求θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在人群流量較大的街道,有一中年人吆喝“送錢”,已知他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質(zhì)地完成相同),旁邊立著一塊小黑板寫道:
摸球方法:從袋中隨機(jī)摸出3個(gè)球,若摸得同一顏色的3個(gè)球,攤主送給摸球者10元錢;若摸得非同一顏色的3個(gè)球,摸球者付給攤主2元錢.
(Ⅰ)任意摸球一次,求摸球者獲得10元的概率.
(Ⅱ)假定一天中有200人次摸獎(jiǎng),試從概率的角度估算一下這個(gè)攤主一個(gè)月(按30天計(jì))能賺多少錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖展示了一個(gè)由區(qū)間(0,1)到實(shí)數(shù)集R的映射過程:區(qū)間(0,1)中的實(shí)數(shù)m對應(yīng)數(shù)軸上的點(diǎn)M,將線段AB圍成一個(gè)圓,使兩端點(diǎn)A、B恰好重合,再將這個(gè)圓放在平面直角坐標(biāo)系中,使其圓心在y軸上,點(diǎn)A的坐標(biāo)為(0,1),連接AM并延長交x軸交于點(diǎn)N(n,0),則區(qū)間(0,1)中實(shí)數(shù)m的像就是n,記作f(m)=n.
(1)f(
1
3
)=
 
;
(2)0<m<1時(shí),f(m)的解析式是f(m)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,既是偶函數(shù),又在(0,+∞)上是單調(diào)減函數(shù)的是( 。
A、y=x
1
2
B、y=cosx
C、y=ln|x+1|
D、y=-2|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=cos2x+asinx在區(qū)間(
π
6
,
π
2
)是減函數(shù),則a的取值范圍是( 。
A、(2,4)
B、(-∞,2]
C、(-∞,4]
D、[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
a
•(
b
+
c
),其中向量
a
=(sinx,-cosx),
b
=(sinx,-3cosx),
c
=(-cosx,sinx),x∈R.
(1)求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)函數(shù)y=f(x)的圖象可由函數(shù)y=sinx的圖象經(jīng)過怎樣變化得出?
(3)若不等式|f(x)-m|<2在x∈[
π
8
,
π
2
]上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案