精英家教網(wǎng)已知F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點,過F1的直線與橢圓相交于A,B兩點.若
AB
AF2
=0,|
AB
|=|
AF2
|
,則橢圓的離心率為
 
分析:由題意設|
AB
|=|
AF2
|=m
,所以|
BF2
|=
2
m
,|AF1|=
2
m
2
,|F1F2|=
6
m
2
,由此可求出橢圓的離心率.
解答:解:由題意設|
AB
|=|
AF2
|=m
,所以|
BF2
|=
2
m

所以|AF1|=
2
m
2
,|F1F2|=
6
m
2

所以e=
c
a
=
2c
2a
=
|F1F2|
|AF1|+|AF2|
=
6
m
2
m+
2
2
m
=
6
-
3
;
故答案為
6
-
3
點評:本題考查橢圓的性質(zhì)和應用,解題時要認真審題,仔細求解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩個焦點,若在橢圓上存在一點P,使∠F1PF2=120°,則橢圓離心率的范圍是
[
3
2
,1
[
3
2
,1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2是橢圓
y2
a2
+
x2
b2
=1(a>b>0)
的兩個焦點,若橢圓上存在點P使得∠F1PF2=120°,求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2是橢圓的兩個焦點.△F1AB為等邊三角形,A,B是橢圓上兩點且AB過F2,則橢圓離心率是
3
3
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知 F1、F2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點,橢圓上存在一點P,使得SF1PF2=
3
b2
,則該橢圓的離心率的取值范圍是
[
3
2
,1)
[
3
2
,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2是橢圓
x2
2
+y2=1
的兩個焦點,點P是橢圓上一個動點,那么|
PF1
+
PF2
|
的最小值是( 。

查看答案和解析>>

同步練習冊答案