8.拋物線y2=8x的焦點(diǎn)坐標(biāo)是( 。
A.(4,0)B.(2,0)C.(0,2)D.(0,4)

分析 由拋物線y2=8x可得:p=4.即可得出焦點(diǎn)坐標(biāo).

解答 解:由拋物線y2=8x可得:p=4.
∴$\frac{p}{2}$=2,
∴拋物線y2=8x的焦點(diǎn)坐標(biāo)是(2,0).
故選:B.

點(diǎn)評(píng) 本題考查了拋物線的標(biāo)準(zhǔn)方程及其性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),公比是q,且滿足:a1=2,b1=1,b2+S2=8,S2=(b2+1)q
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)設(shè)cn=$\frac{{a}_{n}}{_{n}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求滿足下列條件的雙曲線方程:一焦點(diǎn)為(-$\sqrt{6}$,0),經(jīng)過點(diǎn)(5,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列函數(shù)中,最小正周期為π,且圖象關(guān)于直線x=$\frac{π}{8}$對(duì)稱的是( 。
A.y=sin(2x-$\frac{π}{4}$)B.y=sin(2x+$\frac{π}{4}$)C.y=sin(x+$\frac{π}{8}$)D.y=sin(x-$\frac{π}{8}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=x+$\frac{{3{a^2}}}{x}$-2alnx在區(qū)間(1,2)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍.
A.[-$\frac{1}{3}$,1]B.[-1,$\frac{1}{3}$]C.[$\frac{1}{3}$.$\frac{2}{3}$]D.[$\frac{1}{3}$,1](

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若函數(shù)f(x)=x3+2x2+mx+1在(-∞,+∞)內(nèi)單調(diào)遞增,則m的取值范圍是(  )
A.m≤$\frac{4}{3}$B.m<$\frac{4}{3}$C.m≥$\frac{4}{3}$D.m>$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=lnx+ln(2-x)+x的單調(diào)遞增區(qū)間是(0,$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{2}{x}$+alnx-2(a∈R).
(1)當(dāng)a=2時(shí),求f(x)的單調(diào)區(qū)間;
(2)記g(x)=f(x)+x-b(b∈R).當(dāng)a=1時(shí),函數(shù)g(x)與x軸有兩個(gè)不同的交點(diǎn),求b的取值范圍;
(3)若函數(shù)f(x)在區(qū)間[e-1,e]上的最小值為-2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.過拋物線y2=2px(p>0)的焦點(diǎn)F做傾斜角為θ直線AB,設(shè)A(x1,y1),B(x2,y2).求證:
(1)y2y1=-P2,x2x1=$\frac{p^2}{4}$;
(2)|AB|=$\frac{2p}{sin^2θ}$=x1+x2+P;
(3)|AF|=$\frac{p}{1-cosθ}$=x1+$\frac{p}{2}$,|BF|=$\frac{p}{1+cosθ}$=x2+$\frac{p}{2}$;
(4)$\frac{1}{IAFI}$+$\frac{1}{IBFI}$=$\frac{2}{p}$;
(5)以AB為直徑的圓與準(zhǔn)線相切;
(6)點(diǎn)A、B在準(zhǔn)線上的射影分別為M、N,則∠MFN=90°.

查看答案和解析>>

同步練習(xí)冊(cè)答案