如圖,已知平面,,,
且是的中點,.
(1)求證:平面;
(2)求證:平面平面;
(3)求此多面體的體積.
(1)詳見解析;(2)詳見解析;(3).
解析試題分析:(1)取的中點,連結(jié)、,利用中位線證明,利用題中條件得到,進而得到,于是說明四邊形為平行四邊形,得到,最后利用直線與平面平行的判定定理證明平面;(2)由平面 得到,再利用等腰三角形三線合一得到,利用直線與平面垂直的判定定理證明平面,結(jié)合(1)中的結(jié)論證明平面,最后利用平面與平面垂直的判定定理證明平面平面;(3)利用已知條件得到平面平面,然后利用平面與平面垂直的性質(zhì)定理求出椎體的高,最后利用椎體的體積公式計算該幾何體的體積.
(1)取中點,連結(jié)、,為的中點, ,且,
又,且 ,且,
為平行四邊形,,
又平面,平面,平面;
(2),,所以為正三角形,,
平面,,平面,又平面,
,又,,
平面,又,平面,
又平面,平面平面;
(3)此多面體是一個以為定點,以四邊形為底邊的四棱錐,
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱錐的底面為一直角梯形,側(cè)面PAD是等邊三角形,其中,,平面底面,是的中點.
(1)求證://平面;
(2)求證:;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個底邊長為8,高為4的等腰三角形,側(cè)視圖(或稱左視圖)是一個底邊長為6,高為4的等腰三角形.
(1)求該幾何體的體積V;
(2)求該幾何體的側(cè)面積S.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
圓錐PO如圖1所示,圖2是它的正(主)視圖.已知圓O的直徑為AB,C是圓周上異于A,B的一點,D為AC的中點.
(1)求該圓錐的側(cè)面積S;
(2)求證:平面PAC平面POD;
(3)若,在三棱錐A-PBC中,求點A到平面PBC的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com