已知函數(shù)f(x)定義域?yàn)閇-1,1],若對于任意的x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時,有f(x)>0.
(1)證明:f(x)為奇函數(shù);
(2)證明:f(x)在[-1,1]上為單調(diào)遞增函數(shù);
(3)設(shè)f(1)=1,若f(x)<m2-2am+1,對所有x∈[-1,1],a∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.
解:(1)令x=y=0,∴f(0)=0,
令y=-x,f(x)+f(-x)=0,∴f(-x)=-f(x),
∴f(x)為奇函數(shù)
(2)∵f(x)是定義在[-1,1]上的奇函數(shù);
令-1≤x
1<x
2≤1,
則有f(x
2)-f(x
1)=f(x
2-x
1)>0,
∴f(x)在[-1,1]上為單調(diào)遞增函數(shù);
(3)f(x)在[-1,1]上為單調(diào)遞增函數(shù),f(x)
max=f(1)=1,使f(x)<m
2-2am+1對所有
x∈[-1,1],a∈[-1,1]恒成立,只要m
2-2am+1>1,即m
2-2am>0
令g(a)=m
2-2am=-2am+m
2,
要使g(a)>0恒成立,則
,
∴m∈(-∞,-2)∪(2,+∞);
分析:(1)先利用特殊值法,求證f(0)=0,令y=-x即可求證;
(2)由(1)得f(x)為奇函數(shù),f(-x)=-f(x),利用定義法進(jìn)行證明;
(3)由題意f(x)<m
2-2am+1,對所有x∈[-1,1],a∈[-1,1]恒成立,只要f(x)的最大值小于m
2-2am+1即可,從而求出m的范圍;
點(diǎn)評:考查抽象函數(shù)及其應(yīng)用,以及利用函數(shù)單調(diào)性的定義判斷函數(shù)的單調(diào)性,并根據(jù)函數(shù)的單調(diào)性解函數(shù)值不等式,體現(xiàn)了轉(zhuǎn)化的思想,在轉(zhuǎn)化過程中一定注意函數(shù)的定義域.