下列命題:
①終邊在坐標(biāo)軸上的角的集合是{α|α=
2
,k∈Z};
②若2sinx=1+cosx,則tan
x
2
必為
1
2
;
③ab=0,asinx+bcosx=
a2+b2
sin(x+φ),(|φ|<π)中,若a>0,則φ=arctan
b
a

④函數(shù)y=sin(
1
2
x-
π
6
)在區(qū)間[-
π
3
,
11π
6
]上的值域?yàn)閇-
3
2
,
2
2
];
⑤方程sin(2x+
π
3
)-a=0在區(qū)間[0,
π
2
]上有兩個(gè)不同的實(shí)數(shù)解x1,x2,則x1+x2=
π
6

其中正確命題的序號(hào)為______.
①由于終邊在x軸上的角的集合為{α|α=kπ=
2kπ
2
,k∈Z},終邊在y軸上的角的集合為{α|α=kπ+
π
2
=
(2k+1)π
2
,k∈Z}所以終邊在坐標(biāo)軸上的角的集合為{α|α=kπ=
2kπ
2
,k∈Z}∪{α|α=kπ+
π
2
=
(2k+1)π
2
,k∈Z}={α|α=
2
,k∈Z}故①對(duì)
②由于當(dāng)x=π時(shí)2sinx=1+cosx仍成立但tan
x
2
=tan
π
2
沒意義故②錯(cuò)
③當(dāng)ab≠0時(shí)asinx+bcosx=
a2+b2
a
a2+  b2
sinx+
b
a2+b2
cosx)由于(
a
a2+b2
)
2
+(
b
a2+b2
)
2
=1
故可令cos∅=
a
a2+  b2
則sin∅=
b
a2+b2
所以asinx+bcosx=
a2+b2
sin(x+φ)(|φ|<π)中,若a>0,則φ=arctan
b
a
故③對(duì)
④令t=
1
2
x-
π
6
則由于x∈[-
π
3
,
11π
6
]故t∈[-
π
3
,
4
]結(jié)合函數(shù)y=sint在t∈[-
π
3
,
4
]上的圖象可知其值域?yàn)閇-
3
2
,1]故④錯(cuò)
⑤令y=sin(2x+
π
3
)=sint則t∈[
π
3
3
]在同一直角坐標(biāo)系中作出y=sint,t∈[
π
3
,
3
]的圖象和y=a使得兩圖象有兩個(gè)交點(diǎn)則可得t1+t2=π即2x1+
π
3
+2x2
π
3
=π所以x1+x2=
π
6
故⑤對(duì)
故答案為 ①③⑤
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題
①若
a
、
b
都是單位向量,則
a
=
b
;
②終邊在坐標(biāo)軸上的角的集合是{α|α=
2
,k∈Z}
;
③若
a
、
b
c
是三個(gè)非零向量,則(
a
b
)•
c
=
a
•(
b
c
)
;
④正切函數(shù)在定義域上單調(diào)遞增;
⑤向量
b
(
b
0
)
a
共線,當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù)λ,使得
b
a
成立.
則錯(cuò)誤的命題的序號(hào)是
①③④⑤
①③④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題:
①終邊在坐標(biāo)軸上的角的集合是{α|α=
2
,k∈Z};
②若2sinx=1+cosx,則tan
x
2
必為
1
2
;
③ab=0,asinx+bcosx=
a2+b2
sin(x+φ),(|φ|<π)中,若a>0,則φ=arctan
b
a

④函數(shù)y=sin(
1
2
x-
π
6
)在區(qū)間[-
π
3
,
11π
6
]上的值域?yàn)閇-
3
2
2
2
];
⑤方程sin(2x+
π
3
)-a=0在區(qū)間[0,
π
2
]上有兩個(gè)不同的實(shí)數(shù)解x1,x2,則x1+x2=
π
6

其中正確命題的序號(hào)為
①③⑤
①③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

下列命題
①若
a
b
都是單位向量,則
a
=
b

②終邊在坐標(biāo)軸上的角的集合是{α|α=
2
,k∈Z}
;
③若
a
、
b
c
是三個(gè)非零向量,則(
a
b
)•
c
=
a
•(
b
c
)
;
④正切函數(shù)在定義域上單調(diào)遞增;
⑤向量
b
(
b
0
)
a
共線,當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù)λ,使得
b
a
成立.
則錯(cuò)誤的命題的序號(hào)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省黃岡中學(xué)高一(上)期末數(shù)學(xué)試卷(解析版) 題型:填空題

下列命題
①若都是單位向量,則
②終邊在坐標(biāo)軸上的角的集合是;
③若、是三個(gè)非零向量,則;
④正切函數(shù)在定義域上單調(diào)遞增;
⑤向量共線,當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù)λ,使得成立.
則錯(cuò)誤的命題的序號(hào)是   

查看答案和解析>>

同步練習(xí)冊(cè)答案