雙曲線
x23
-y2=1
的焦點坐標(biāo)是( 。
分析:根據(jù)雙曲線方程,可得該雙曲線的焦點在x軸上,由平方關(guān)系算出c=
a2+b2
=2,即可得到雙曲線的焦點坐標(biāo).
解答:解:∵雙曲線方程為
x2
3
-y2=1

∴雙曲線的焦點在x軸上,且a2=3,b2=1
由此可得c=
a2+b2
=2,
∴該雙曲線的焦點坐標(biāo)為(±2,0)
故選:C
點評:本題給出雙曲線方程,求它的焦點坐標(biāo),著重考查了雙曲線的標(biāo)準(zhǔn)方程和焦點坐標(biāo)求法等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

P是雙曲線
x23
-y2=1
的右支上一動點,F(xiàn)是雙曲線的右焦點,已知A(3,1),則|PA|+|PF|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已如點M(1,0)及雙曲線
x2
3
-y2=1
的右支上兩動點A,B,當(dāng)∠AMB最大時,它的余弦值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
3
-y2=1
的左右焦點分別為F1F2,過F1且傾斜角為60°的直線l與雙曲線交于M,N兩點,則△MNF2的內(nèi)切圓半徑為
3
3
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線y2=-2px(p>0)的焦點與雙曲線
x23
-y2=1
的左焦點重合,則p的值
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點M(3,1)作直線交雙曲線
x23
-y2=1
于A、B兩點,且點M恰為線段AB中點,則直線AB的方程為
 

查看答案和解析>>

同步練習(xí)冊答案