7.已知某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{2}{3}$.

分析 由三視圖可知幾何體為四棱錐,其中底面是邊長為1的正方形,有一側(cè)棱垂直與底面,高為2,即可求出棱錐的體積.

解答 解:由三視圖可知幾何體為四棱錐,其中底面是邊長為1的正方形,有一側(cè)棱垂直與底面,高為2.
∴棱錐的體積V=$\frac{1}{3}×1×1×2$=$\frac{2}{3}$.
故答案為$\frac{2}{3}$.

點(diǎn)評 本題考查了棱錐的三視圖和結(jié)構(gòu)特征,體積與表面積計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.空間直角坐標(biāo)系中,點(diǎn)A(1,0,1)關(guān)于x軸對稱的點(diǎn)為A',點(diǎn)B(2,1,-1),則$\frac{{|{AB}|}}{{|{A'B}|}}$=(  )
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{3}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知△ABC中,a:b:c=3:2;4,則cosB=( 。
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.$\frac{7}{8}$D.-$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知不等式(ax+3)(x2-b)≤0對任意x∈(-∞,0)恒成立,其中a,b是整數(shù),則a+b的取值的集合為   {4,10}   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=log2$\frac{x}{2}$•log2$\frac{x}{4}$,x∈(2,8]的值域?yàn)椋ā 。?table class="qanwser">A.[0,2]B.[-$\frac{1}{4}$,2]C.(0,2]D.(-$\frac{1}{4}$,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.y=lg|x-1|的圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)計(jì)算(lg2)2+lg2•lg5+lg5;
(2)計(jì)算${(\root{3}{2}×\sqrt{3})^6}-8{(\frac{16}{49})^{-\frac{1}{2}}}-\root{4}{2}×{8^{0.25}}-{(-2016)^0}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.“m<0”是“$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{m-1}$=1表示的曲線是雙曲線”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如果偶函數(shù)在[a,b]具有最大值,那么該函數(shù)在[-b.-a]有(  )
A.最大值B.最小值C.沒有最大值D.沒有最小值

查看答案和解析>>

同步練習(xí)冊答案