分析 對b分類討論,當(dāng)b≤0 時,由(ax+3)(x2-b)≤0得到ax+3≤0,由一次函數(shù)的圖象知不存在;
當(dāng)b>0 時,由(ax+3)(x2-b)≤0,利用數(shù)學(xué)結(jié)合的思想得出a,b的整數(shù)解.
解答 解:當(dāng)b≤0 時,由(ax+3)(x2-b)≤0
得到ax+3≤0 在x∈(-∞,0)上恒成立,
則a不存在;
當(dāng)b>0 時,由(ax+3)(x2-b)≤0,
可設(shè)f(x)=ax+3,g(x)=x2-b,
又g(x) 的大致圖象如下,
那么由題意可知:
$\left\{\begin{array}{l}{a>0}\\{\frac{3}{a}=\sqrt}\end{array}\right.$
再由a,b 是整數(shù)得到$\left\{\begin{array}{l}{a=1}\\{b=9}\end{array}\right.$或$\left\{\begin{array}{l}{a=3}\\{b=1}\end{array}\right.$
因此a+b=10或4.
故答案為{4,10}.
點(diǎn)評 本題考查了對參數(shù)的討論問題和利用數(shù)形結(jié)合的思想解決實(shí)際問題,是綜合性題目.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{63}{8}$ | B. | $\frac{63}{16}$ | C. | -84 | D. | -$\frac{63}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2+6x | B. | x2+8x+7 | C. | x2+2x-3 | D. | x2+6x-10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{6}$ | B. | $\frac{6}{7}$ | C. | $\frac{4}{5}$ | D. | $\frac{1}{30}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com