【題目】定義向量相伴函數(shù),函數(shù)相伴向量,其中O為坐標(biāo)原點(diǎn),記平面內(nèi)所有向量的相伴函數(shù)構(gòu)成的集合為S.

1)設(shè),求證:;

2)已知,求其相伴向量的模;

3)已知為圓上一點(diǎn),向量相伴函數(shù)處取得最大值,當(dāng)點(diǎn)M在圓C上運(yùn)動(dòng)時(shí),求的取值范圍.

【答案】1)證明見(jiàn)解析;(2;(3.

【解析】

1)把化為形式,由定義證明;

2)把化為形式,得其相伴向量,由模公式可求模;

3)先根據(jù)定義得到函數(shù)取得最大值時(shí)對(duì)應(yīng)的自變量,再結(jié)合幾何意義求出的取值范圍,由正切的二倍角公式及函數(shù)的單調(diào)性可得結(jié)論.

1,其相伴向量,

;

(2)

,

相伴向量,

;

3)向量相伴函數(shù),其中

當(dāng)時(shí),取得最大值,故,∴,

表示直線的斜率,由幾何意義知,令,則,

當(dāng)時(shí),單調(diào)遞減,∴,當(dāng)時(shí),單調(diào)遞減,∴,

綜上所述,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,圓方程為,點(diǎn),直線過(guò)點(diǎn)

1)如圖1,直線的斜率為,直線交圓不同兩點(diǎn),求弦的長(zhǎng)度;

2)動(dòng)點(diǎn)在圓上作圓周運(yùn)動(dòng),線段的中點(diǎn)為點(diǎn),求點(diǎn)的軌跡方程;

3)在(1)中,如圖2,過(guò)點(diǎn)作直線,交圓不同兩點(diǎn),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過(guò)點(diǎn).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線,從原點(diǎn)O作射線交于點(diǎn)M,點(diǎn)N為射線OM上的點(diǎn),滿足,記點(diǎn)N的軌跡為曲線C.

(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線與曲線C交于P,Q兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,.

1)試判斷函數(shù)上的單調(diào)性,并說(shuō)明理由;

2)若是在區(qū)間上的單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C經(jīng)過(guò)M,1),N,1)兩點(diǎn),且圓心C在直線x+y30上,過(guò)點(diǎn)A(﹣1,0)的動(dòng)直線l與圓C相交于P、Q兩點(diǎn).

(Ⅰ)求圓C的方程;

(Ⅱ)當(dāng)|PQ|4時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“勾股定理”在西方被稱為“畢達(dá)哥拉斯定理”,國(guó)時(shí)期吳國(guó)的數(shù)學(xué)家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細(xì)證明如圖所示的“勾股圓方圖”中,四個(gè)相同的直角三角形與中間的小正方形拼成一個(gè)大正方形若直角三角形中較小的銳角,現(xiàn)在向該大止方形區(qū)域內(nèi)隨機(jī)地投擲一枚飛鏢,則飛鏢落在陰影部分的概率是  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,,下頂點(diǎn)為,為坐標(biāo)原點(diǎn),點(diǎn)到直線的距離為,為等腰直角三角形.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)直線與橢圓交于,兩點(diǎn),若直線與直線的斜率之和為,證明:直線恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在,,.

(1)求角的大小

(2)設(shè)數(shù)列滿足,項(xiàng)和為,,的值.

【答案】(1);(2).

【解析】試題分析:

(1)由題意結(jié)合三角形內(nèi)角和為可得.由余弦定理可得,,結(jié)合勾股定理可知為直角三角形,,.

(2)結(jié)合(1)中的結(jié)論可得 . ,據(jù)此可得關(guān)于實(shí)數(shù)k的方程解方程可得,.

試題解析:

(1)由已知,又,所以.又由,

所以,所以,

所以為直角三角形,,.

(2) .

所以 ,得

,所以,所以,所以.

型】解答
結(jié)束】
18

【題目】已知點(diǎn)是平行四邊形所在平面外一點(diǎn)如果,,.(1)求證:是平面的法向量

(2)求平行四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】空氣質(zhì)量指數(shù)AQI是一種反映和評(píng)價(jià)空氣質(zhì)量的方法,AQI指數(shù)與空氣質(zhì)量對(duì)應(yīng)如表所示:

AQI

0~50

51~100

101~150

151~200

201~300

300以上

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

如圖是某城市2018年12月全月的AQI指數(shù)變化統(tǒng)計(jì)圖:

根據(jù)統(tǒng)計(jì)圖判斷,下列結(jié)論正確的是( �。�

A. 整體上看,這個(gè)月的空氣質(zhì)量越來(lái)越差

B. 整體上看,前半月的空氣質(zhì)量好于后半個(gè)月的空氣質(zhì)量

C. 從AQI數(shù)據(jù)看,前半月的方差大于后半月的方差

D. 從AQI數(shù)據(jù)看,前半月的平均值小于后半月的平均值

查看答案和解析>>

同步練習(xí)冊(cè)答案
关 闭