已知:函數(shù)f(x)=ax+
b
x
+c
(a、b、c是常數(shù))是奇函數(shù),且滿足f(1)=
5
2
,f(2)=
17
4

(Ⅰ)求a、b、c的值;
(Ⅱ)試判斷函數(shù)f(x)在區(qū)間(0,
1
2
)
上的單調性并證明.
分析:(1)由函數(shù)是奇函數(shù)得到c=0,再利用題中的2個等式求出a、b的值.
(2)區(qū)間(0,
1
2
)
上任取2個自變量x1、x2,將對應的函數(shù)值作差、變形到因式積的形式,判斷符號,
依據(jù)單調性的定義做出結論.
解答:解:(1)∵f(-x)=-f(x)∴c=0∵
f(1)=
5
2
f(2)=
17
4

a+b=
5
2
2a+
b
2
=
17
4
a=2
b=
1
2

(2)∵由(1)問可得f(x)=2x+
1
2x

f(x)=2x+
1
2x
在區(qū)間(0,0.5)上是單調遞減的
證明:設任意的兩個實數(shù)0<x1x2
1
2

f(x1)-f(x2)=2(x1-x2)+
1
2x1
-
1
2x2
=2(x1-x2)+
(x2-x1)
2x1x2

=
(x2-x1)(1-4x1x2)
2x1x2

又∵0<x1x2
1
2

∴x1-x2<00<x1x2
1
4
,1-4x1x2>0f(x1)-f(x2)>0
f(x)=2x+
1
2x
在區(qū)間(0,0.5)上是單調遞減的.
點評:本題考查用待定系數(shù)法求解析式,證明函數(shù)的單調性.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知x0函數(shù)f(x)=(
1
3
)x-log2x
的零點,若0<x1<x0,則f(x1)的值為( 。
A、恒為負值B、等于0
C、恒為正值D、不大于0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:函數(shù)f(x)=
x2+4x
,
(1)求:函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性并說明理由;
(3)判斷函數(shù)f(x)在(-∞,-2)上的單調性,并用定義加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知冪函數(shù)f(x)=x-m2+2m+3(m∈Z)為偶函數(shù),且在區(qū)間(0,+∞)上是單調增函數(shù),則m=
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

.已知冪函數(shù)f(x)=xk2-2k-3(k∈N*)的圖象關于y軸對稱,且在區(qū)間(0,+∞)上是減函數(shù),
(1)求函數(shù)f(x)的解析式;
(2)若a>k,比較(lna)0.7與(lna)0.6的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知奇函數(shù)f(x)=
-x2+2x   (x>0)
0
                (x=0)
x2+mx
     (x<0)
,則m=( 。

查看答案和解析>>

同步練習冊答案