A. | 27π | B. | 18π | C. | 9π | D. | 54π |
分析 先設(shè)正方體的邊長為a,根據(jù)正方體的表面積S=6a2=54,求得a=3,再根據(jù)正方體的體對(duì)角線長等于其外接球的直徑,求得外接球的半徑R,代入球的表面積公式計(jì)算.
解答 解:設(shè)正方體的邊長為a,則正方體的表面積S=6a2=54,
∴a=3,又正方體的體對(duì)角線長等于其外接球的直徑,
∴外接球的半徑R=$\frac{3\sqrt{3}}{2}$,
∴其外接球的表面積為4π×$(\frac{3\sqrt{3}}{2})^{2}$=27π.
故選A.
點(diǎn)評(píng) 本題考查了正方體的表面積,正方體的外接球的表面積,解題的關(guān)鍵是利用正方體的體對(duì)角線長等于其外接球的直徑,求得外接球的半徑.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\left\{{1,\sqrt{5}}\right\}$ | B. | $\left\{{\sqrt{5},\frac{{\sqrt{2}}}{2}}\right\}$ | C. | $\left\{{1,\sqrt{5},\frac{{\sqrt{2}}}{2}}\right\}$ | D. | $\left\{{1,2,\sqrt{5},\frac{{\sqrt{2}}}{2}}\right\}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\begin{array}{l}\\ y={3^x}\end{array}$ | B. | y=(-3)x | C. | y=2x+1 | D. | y=x3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-4,4,0) | B. | (2,0,1) | C. | (2,3,3) | D. | (3,-3,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 至少一個(gè)白球與都是白球 | B. | 至少一個(gè)白球與至少一個(gè)紅球 | ||
C. | 恰有一個(gè)白球與 恰有2個(gè)白球 | D. | 至少一個(gè)白球與都是紅球 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com