在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,a(cosC+sinC)=b
(I)求角A的大小
(II)若a=1,S△ABC=,求b、c的值.
【答案】分析:(I)利用正弦定理化簡(jiǎn)已知的等式,整理后根據(jù)sinC不為0求出tanA的值,由A為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出A的度數(shù);
(II)由三角形的面積公式及余弦定理分別列出關(guān)系式,聯(lián)立組成方程組,即可求出b與c的值.
解答:解:(I)由正弦定理得:sinA(cosC+sinC)=sinB,
又sinB=sin(A+C),
化簡(jiǎn)得:sinAsinC=cosAsinC,
∵sinC≠0,∴sinA=cosA,即tanA=,
∵A為三角形的內(nèi)角,
∴A=;                 
(II)根據(jù)題意得
把A=,a=1代入解得:
點(diǎn)評(píng):此題考查了正弦、余弦定理,以及三角形的面積公式,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D為BC的中點(diǎn),求△ABC的面積及AD的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案