10.已知函數(shù)$f(x)=2sin(2x+φ)(|φ|<\frac{π}{2})$部分圖象如圖所示.
(Ⅰ)求φ值及圖中x0的值;
(Ⅱ)在△ABC中,A,B,C的對邊分別為a,b,c,已知$c=\sqrt{7}$,f(C)=-2,sinB=2sinA,求a的值.

分析 (Ⅰ)由圖象可知f(0)=1,可求$sinφ=\frac{1}{2}$,結合范圍$|φ|<\frac{π}{2}$,可求$φ=\frac{π}{6}$,由f(x0)=2,得$2{x_0}+\frac{π}{6}=\frac{π}{2}+2kπ,k∈Z$,結合圖象可求${x_0}=\frac{7π}{6}$.
(Ⅱ)由f(C)=-2,得$sin(2C+\frac{π}{6})=-1$,結合范圍C∈(0,π),解得$C=\frac{2π}{3}$,由正弦定理得b=2a,由余弦定理即可解得a的值.

解答 (本題滿分為12分)
解:(Ⅰ)解:由圖象可知f(0)=1,
所以$sinφ=\frac{1}{2}$,
又因為$|φ|<\frac{π}{2}$,
所以$φ=\frac{π}{6}$.…(3分)
因為f(x0)=2,所以$sin(2{x_0}+\frac{π}{6})=1$,解得$2{x_0}+\frac{π}{6}=\frac{π}{2}+2kπ,k∈Z$.
從而${x_0}=\frac{π}{6}+kπ,k∈Z$.由圖象可知k=1,
所以${x_0}=\frac{7π}{6}$;…(6分)
(Ⅱ)由f(C)=-2,得$sin(2C+\frac{π}{6})=-1$,且C∈(0,π),解得$C=\frac{2π}{3}$.…(8分)
因為sinB=2sinA,由正弦定理得b=2a.…(10分)
又由余弦定理c2=a2+b2-2abcosC,及$c=\sqrt{7}$和$C=\frac{2π}{3}$,可解得a=1.…(12分)

點評 本題主要考查了本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,考查了正弦定理,余弦定理在解三角形中的應用,考查了數(shù)形結合思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

20.在△ABC中,角A,B,C的對邊分別為a,b,c,且b=c,2sinB=$\sqrt{3}$sinA.
(Ⅰ)求cosB的值;
(Ⅱ)若a=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知雙曲線x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)的離心率為$\sqrt{2}$,則雙曲線的漸近線的夾角為( 。
A.60°B.45°C.75°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若集合M={y|y=x4,x∈(-1,0)},集合$N=\left\{{x|y=ln\frac{x}{x-1}}\right\}$,則下列各式中正確的是(  )
A.M?NB.N?MC.M∩N=ϕD.M=N

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在如圖所示的矩形中隨機投擲30000個點,則落在曲線C下方(曲線C為正態(tài)分布N(1,1)的正態(tài)曲線)的點的個數(shù)的估計值為( 。
附:正態(tài)變量在區(qū)間(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)內(nèi)取值的概率分別是0.683,0.954,0.997.
A.4985B.8185C.9970D.24555

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.定義在R上的奇函數(shù)f(x)在(-∞,0)上遞增,f(2)=1,則滿足|f(log${\;}_{\frac{1}{2}}$x)|>1的x的取值范圍是( 。
A.($\frac{1}{4}$,4)B.(0,$\frac{1}{2}$)C.(0,$\frac{1}{2}$)∪(2,+∞)D.(0,$\frac{1}{4}$)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在邊長為2的正方形ABCD內(nèi)部取一點M,則滿足∠AMB為銳角的概率是(  )
A.$\frac{π}{4}$B.$\frac{π}{8}$C.$1-\frac{π}{4}$D.$1-\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知$cos({\frac{π}{4}-α})=\frac{4}{5}$,則sin2α=( 。
A.$\frac{24}{25}$B.$\frac{7}{25}$C.$±\frac{24}{25}$D.$±\frac{7}{25}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若多項式x2+x10=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9+a10(x+1)10,則a8=45.

查看答案和解析>>

同步練習冊答案