19.已知集合A={x|x2-9x-10=0},B={x|mx+1=0},且A∪B=A,則m的取值集合是$\{0,1,-\frac{1}{10}\}$.

分析 集合A={x|x2-9x-10=0}={-1,10},由A∪B=A,可得B⊆A.分類(lèi)討論:m=0時(shí),B=∅.m≠0,B={-$\frac{1}{m}$},進(jìn)而得出.

解答 解:集合A={x|x2-9x-10=0}={-1,10},
∵A∪B=A,∴B⊆A.
∵B={x|mx+1=0},m=0時(shí),B=∅.
m≠0,B={-$\frac{1}{m}$},
∴-$\frac{1}{m}$=-1或10,解得m=1,m=$\frac{1}{10}$.
可得:m的取值集合是$\{0,1,-\frac{1}{10}\}$.
故答案為:$\{0,1,-\frac{1}{10}\}$.

點(diǎn)評(píng) 本題考查了方程的解法、集合的運(yùn)算性質(zhì),考查了分類(lèi)討論方法、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列說(shuō)法正確的是( 。
A.命題“若a≥b,則a2≥b2”的逆否命題為“若a2≤b2,則a≤b”
B.“x=1”是“x2-3x+2=0”的必要不充分條件
C.若p∧q為假命題,則p,q均為假命題
D.對(duì)于命題p:?x∈R,x2+x+1>0,則¬p:?x0∈R,x02+x0+1≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知矩陣A=$(\begin{array}{l}{x}&{-3}\\{y}&{0}\end{array})$,B=$(\begin{array}{l}{-2y}&{0}\\{-y}&{11-2x}\end{array})$,C=$(\begin{array}{l}{3}&{-3}\\{0}&{1}\end{array})$,且A+B=C,則x+y的值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.(1)log2${\frac{1}{16}}$=-4,
(2)ln$\sqrt{e}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知集合A={1,2,3,4},B={y|y=x+1,x∈A},則A∩B={2,3,4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=$\sqrt{x-5}$-$\frac{1}{\sqrt{8-x}}$的定義域?yàn)榧螦,B={x∈Z|3<x<11},C={x∈R|x<a或x>a+1}.
(1)求A,(∁RA)∩B;
(2)若A∪C=R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)f(x)=x+$\frac{1}{x-3}$(x>3)的最小值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知F1,F(xiàn)2是雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的兩個(gè)焦點(diǎn),|F1F2|=2$\sqrt{3}$,離心率為$\frac{{\sqrt{6}}}{2}$,M(x0,y0)是雙曲線C上的一點(diǎn),若$\overrightarrow{M{F_1}}$•$\overrightarrow{M{F_2}}$<0,則y0的取值范圍是( 。
A.$({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$B.$({-\frac{{\sqrt{3}}}{6},\frac{{\sqrt{3}}}{6}})$C.$({-\frac{{2\sqrt{2}}}{3},\frac{{2\sqrt{2}}}{3}})$D.$({-\frac{{2\sqrt{3}}}{3},\frac{{2\sqrt{3}}}{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.i-2的共軛復(fù)數(shù)是( 。
A.2+iB.2-iC.-2+iD.-2-i

查看答案和解析>>

同步練習(xí)冊(cè)答案