(本小題滿分12分)
某廠生產(chǎn)某種零件,每個零件的成本為40元,出廠單價定為60元.該廠為鼓勵銷售商訂購,決定當(dāng)一次訂購量超過100個時,每多訂購一個,訂購的全部零件的出廠單價就降低0.02元,但實(shí)際出廠單價不能低于51元.
(1)當(dāng)一次訂購量為多少個時,零件的實(shí)際出廠單價恰降為51元?
(2)設(shè)一次訂購量為x個,零件的實(shí)際出廠單價為P元,寫出函數(shù)P=f(x)的表達(dá)式.

(1)550(2)

解析試題分析:解:(1)設(shè)每個零件的實(shí)際出廠單價恰好降為51元時,一次訂購量為個,
,
因此,當(dāng)一次訂購量為個時,每個零件的實(shí)際出廠單價恰好降為51元。
(2)由題意知,當(dāng)時,,
當(dāng)時,,
當(dāng)時,

考點(diǎn):本試題考查了函數(shù)在實(shí)際生活中的運(yùn)用。
點(diǎn)評:解決該試題的關(guān)鍵是利用已知的條件,審清題意,列出關(guān)系式,進(jìn)而分析函數(shù)的解析式。體現(xiàn)了分段函數(shù)的重要性,同時要注意實(shí)際中自變量的定義域,有限制條件。屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

建造一條防洪堤,其斷面為等腰梯形,腰與底邊成角為(如圖),考慮到防洪堤堅(jiān)固性及石塊用料等因素,設(shè)計(jì)其斷面面積為平方米,為了使堤的上面與兩側(cè)面的水泥用料最省,則斷面的外周長(梯形的上底線段與兩腰長的和)要最小.

(1)求外周長的最小值,并求外周長最小時防洪堤高h(yuǎn)為多少米?
(2)如防洪堤的高限制在的范圍內(nèi),外周長最小為多少米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)南昌市在加大城市化進(jìn)程中,環(huán)境污染問題也日益突出。據(jù)環(huán)保局測定,某處的污染指數(shù)與附近污染源的強(qiáng)度成正比,與到污染源距離的平方成反比.現(xiàn)已知相距18的A,B兩家工廠(視作污染源)的污染強(qiáng)度分別為,它們連線上任意一點(diǎn)C處的污染指數(shù)等于兩家工廠對該處的污染指數(shù)之和.設(shè)).
(1) 試將表示為的函數(shù);
(2) 若,且時,取得最小值,試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)="2" sin(0≤x≤5),點(diǎn)A、B分別是函數(shù)y=f(x)圖像上的最高點(diǎn)和最低點(diǎn).
(1)求點(diǎn)A、B的坐標(biāo)以及·的值;
(2)沒點(diǎn)A、B分別在角、的終邊上,求tan()的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

解方程:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分16分)
有甲、乙兩種商品,經(jīng)銷這兩種商品所獲的利潤依次為(萬元)和(萬元),它們與投入的資金(萬元)的關(guān)系,據(jù)經(jīng)驗(yàn)估計(jì)為:,  今有3萬元資金投入經(jīng)銷甲、乙兩種商品,為了獲得最大利潤,應(yīng)對甲、乙兩種商品分別投入多少資金?總共獲得的最大利潤是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工廠生產(chǎn)一種產(chǎn)品,已知該產(chǎn)品的月產(chǎn)量x噸與每噸產(chǎn)品的價格(元)之間的關(guān)系為,且生產(chǎn)噸的成本為(元).問該廠每月生產(chǎn)多少噸產(chǎn)品才能使利潤達(dá)到最大?最大利潤是多少?(利潤=收入-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

計(jì)算
(1)
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

命題方程有兩個不等的正實(shí)數(shù)根,命題方程無實(shí)數(shù)根。若“”為真命題,求的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案