已知函數(shù)
見(jiàn)解析

試題分析:證明:設(shè)




因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001433659528.png" style="vertical-align:middle;" />,又,所以
,所以,,
所以,
即得上為增函數(shù).
點(diǎn)評(píng):明確推理格式,力求層次分明。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)求的單調(diào)區(qū)間和值域;
(Ⅱ)設(shè),函數(shù),若對(duì)于任意,總存在使得成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分14分)已知為定義在上的奇函數(shù),當(dāng)時(shí),
(1)求上的解析式;
(2)試判斷函數(shù)在區(qū)間上的單調(diào)性,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
某工廠修建一個(gè)長(zhǎng)方體無(wú)蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的 造價(jià)為150元,池壁每平方米的造價(jià)為120元.設(shè)池底長(zhǎng)方形長(zhǎng)為米.
(1)求底面積,并用含的表達(dá)式表示池壁面積;
(2)怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

定義域是一切實(shí)數(shù)的函數(shù),其圖像是連續(xù)不斷的,且存在常數(shù)()
使得對(duì)任意實(shí)數(shù)都成立,則稱(chēng)是一個(gè)“—伴隨函數(shù)”. 有
下列關(guān)于“—伴隨函數(shù)”的結(jié)論:
是常數(shù)函數(shù)中唯一一個(gè)“—伴隨函數(shù)”;
②“—伴隨函數(shù)”至少有一個(gè)零點(diǎn);
是一個(gè)“—伴隨函數(shù)”;
其中正確結(jié)論的個(gè)數(shù)是 (    )
A.1個(gè);B.2個(gè);C.3個(gè);D.0個(gè);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)設(shè),寫(xiě)出數(shù)列的前5項(xiàng);
(Ⅱ)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分12分)已知函數(shù)在點(diǎn)處取得極小值-4,使其導(dǎo)函數(shù)的取值范圍為(1,3)
(Ⅰ)求的解析式及的極大值;
(Ⅱ)當(dāng)時(shí),求的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù),滿(mǎn)足,,,,則函數(shù)的圖象在處的切線(xiàn)方程為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知,,,
若函數(shù)不存在零點(diǎn),則的范圍是 (     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案