9.如圖,在復(fù)平面內(nèi),若復(fù)數(shù)z1,z2對(duì)應(yīng)的向量分別是$\overrightarrow{OA},\overrightarrow{OB}$,則復(fù)數(shù)$\frac{z_1}{z_2}$所對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運(yùn)算法則、幾何意義即可得出.

解答 解:$\overrightarrow{OA}$=(1,2),$\overrightarrow{OB}$=(1,-1).∴z1=1+2i,z2=1-i.
∴復(fù)數(shù)$\frac{z_1}{z_2}$=$\frac{1+2i}{1-i}$=$\frac{(1+2i)(1+i)}{(1-i)(1+i)}$=$\frac{-1+3i}{2}$所對(duì)應(yīng)的點(diǎn)$(-\frac{1}{2},\frac{3}{2})$位于第二象限.
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知f(x)=-x3-2x2+4x,若對(duì)x∈[-3,3]恒有f(x)≥m2-14m成立,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,3]B.[11,+∞)C.(3,11)D.[3,11]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.給出下列四個(gè)命題:
①若$\overrightarrow{p}$=x$\overrightarrow{a}$+y$\overrightarrow$,則$\overrightarrow{p}$與$\overrightarrow{a}$,$\overrightarrow$共面;   
②若$\overrightarrow{p}$與$\overrightarrow{a}$,$\overrightarrow$共面,則$\overrightarrow{p}$=x$\overrightarrow{a}$+y$\overrightarrow$.
③若$\overrightarrow{MP}$=x$\overrightarrow{MA}$+y$\overrightarrow{MB}$,則P,M,A、B共面;
其中真命題的序號(hào)是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.將y=cos(2x+$\frac{π}{4}$)圖象上每點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的$\frac{1}{2}$倍,再向右平移$\frac{π}{16}$個(gè)單位得到的函數(shù)表達(dá)式是y=( 。
A.cos(x+$\frac{3π}{16}$)B.cos(4x+$\frac{3π}{16}$)C.cos4xD.cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)$f(x)=\sqrt{2}sin(ωx+\frac{π}{4})(ω>0)$的最小正周期為π,下列四個(gè)判斷:
(1)當(dāng)$x∈[0,\frac{π}{2}]$時(shí),f(x)的最小值為-1;
(2)函數(shù)f(x)的圖象關(guān)于直線$x=\frac{π}{8}$對(duì)稱;
(3)函數(shù)f(x)的圖象可由$y=\sqrt{2}cos2x$的圖象向右平移$\frac{π}{4}$個(gè)單位長(zhǎng)度得到;
(4)函數(shù)f(x)在區(qū)間$[\frac{π}{8},\frac{3π}{8}]$上是減函數(shù).
以上正確判斷的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)有兩條直線a、b和三個(gè)平面α、β、γ,則下列命題中錯(cuò)誤的是( 。
A.若a∥α,a∥b,b?α,則b⊥αB.若α∥β,β∥γ,則α∥γ
C.若a⊥α,a⊥b,b?α,則b∥αD.若α⊥γ,β∥γ,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{\frac{1}{2^x}}&{x≤1}\\{-{{log}_2}x}&{x>1}\end{array}}$則滿足不等式f(2a-1)>f(a+1)的實(shí)數(shù)a的取值范圍是( 。
A.(-∞,2)B.(0,1)C.(1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,若$\overrightarrow{AC}?\overrightarrow{AB}=4$,且$\frac{{a}^{2}-{(b+c)}^{2}}{bc}=1$,則△ABC的面積等于( 。
A.$5\sqrt{3}$B.$4\sqrt{3}$C.$2\sqrt{3}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.從某校高三的1000名學(xué)生中用隨機(jī)抽樣的方法,得到其中100人的身高數(shù)據(jù)(單位:cm,所得數(shù)據(jù)均在[140,190]上),并制成頻率分布直方圖(如圖所示),由該圖可估計(jì)該校高三學(xué)生中身高不低于165cm的人數(shù)約為( 。
A.500B.550C.600D.700

查看答案和解析>>

同步練習(xí)冊(cè)答案