5.用反證法證明結(jié)論“實數(shù)a,b,c至少有兩個大于1.”需要假設(shè)“實數(shù)a,b,c至多有一個大于1”.

分析 根據(jù)用反證法證明數(shù)學(xué)命題的步驟,應(yīng)先假設(shè)命題的反面成立,求出要證明題的否定,即為所求.

解答 解:用反證法證明數(shù)學(xué)命題時,應(yīng)先假設(shè)命題的反面成立,
而命題:“實數(shù)a,b,c至少有兩個大于1”的否定是:“a,b,c至多有一個大于1”,
故答案為:一個大于1

點評 本題主要考查反證法的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知等比數(shù)列{an}的前n項和為Sn,若Sn=3n+t,則a2=6,t=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若函數(shù)f(x)=x3+ax2+3x-6在x=-3時取得極值,則a=( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知拋物線y2=2px(p>0)的焦點F關(guān)于直線x+y=1的對稱點仍在拋物線上,則p的值等于6$±4\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.給出如下三對事件:
①某人射擊1次,“射中7環(huán)”與“射中8環(huán)”;
②甲、乙兩人各射擊1次,“至少有1人射中目標(biāo)”與“甲射中,但乙未射中目標(biāo)”;
③從裝有2個紅球和2和黑球的口袋內(nèi)任取2個球,“沒有黑球”與“恰有一個紅球”.
其中屬于互斥事件的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合 A={x|ex≤1},B={x|ln x≤0},則 A∪B=(  )
A.(-∞,1]B.(0,1]C.[1,e]D.(0,e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知坐標(biāo)平面上的凸四邊形 ABCD 滿足 $\overrightarrow{AC}$=(1,$\sqrt{3}$),$\overrightarrow{BD}$=(-$\sqrt{3}$,1),則凸四邊形ABCD的面積為2; $\overrightarrow{AB}$•$\overrightarrow{CD}$的取值范圍是[-2,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知正項數(shù)列{an}滿足:a1=$\frac{1}{2}$,an2=an-1an+an-1(n≥2),Sn為數(shù)列{an}的前n項和.
(I)求證:對任意正整數(shù)n,有$\frac{S_n}{n}≤\frac{n}{2}$;
(II)設(shè)數(shù)列$\left\{{\frac{1}{{{a_n}^2}}}\right\}$的前n項和為Tn,求證:對任意M∈(0,6),總存在正整數(shù)N,使得n>N時,Tn>M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.點P從點A(1,0)出發(fā),沿單位圓x2+y2=1逆時針方向運動$\frac{2π}{3}$弧長到達點Q,則點Q的坐標(biāo)是(  )
A.(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)B.($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$)C.(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$)D.(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$)

查看答案和解析>>

同步練習(xí)冊答案